sexta-feira, 27 de fevereiro de 2009

Escolas Amigas do Ambiente_Albufeira


No site da RTP aqui, também é possível ver uma reportagem sobre o mesmo tema.
Nuninho! Obrigado pela dica!

quarta-feira, 25 de fevereiro de 2009

Texto_Building with mud, glorious mud_BD

Building with mud, glorious mud
06 February 2009
An email arrives from Jean Dethier, director of the Pompidou's architecture exhibitions between 1975 and 2004. Remember Le Temps des Gares, Images & Imaginaires d'Architecture, Architecture de Terre? Great exhibitions, all. Dethier wants to tell me about a lecture he's giving, "Building with Raw Earth: an eco-revolution?" on February 17 at Fitzwilliam College, Cambridge.
This was a timely message as when it came, I was sorting through photographs I'd taken as a student of a trip through Saharan Africa to Djenne and yes, to Timbuktu, when getting to either town was an adventure even by sturdy Peugeot 404 pick-up.
Last year, I heard a Cambridge student confidently telling her colleagues, "everyone has been to Djenne." Perhaps they have. Magazines, TV documentaries and the internet have made the mud mosque at Djenne as familiar as Notre Dame, and I imagine there must be an Easy Jet or Ryanair flight to Mali for the price of a handful of dust.
What thrilled me at Djenne was the fact that such an ambitious building could be made of mud. Proper religious buildings, indeed all proper buildings, were surely made of brick, stone and timber, or concrete, steel and glass?
When I returned from Mali, I happened to stay with friends at Collompton in Devon, and their venerable cottage proved to be made of... mud. Well, of cob to be exact. This got me excited. I began investigating mud or "raw earth buildings", delving into the history of vernacular structures and how their construction had formed a variety of different styles as rich as it was delightful, a variety nurturing a true sense of place in the days before comprehensive redevelopment and urban regeneration, along with a nationwide developer housing spree, had made everywhere begin to look much of a much.
What I also learned was that modern forms of construction, married to rules, regulations and general bullying by governments and officialdom, meant that houses were built to increasingly similar specifications. Even if a new house tried to blend in with its old neighbours, it stood out because of its scale, proportions, the size of its windows and so on. The art of building with local materials gave us houses with a delightful range of styles, proportions, thicknesses of walls, depths of window reveals, shapes of roof... the list goes on. If we could find economical ways of building modern houses from local materials, we might yet escape the banality of 90% of contemporary housing design, buildings raced up without love and with little respect for locale.
Imagine if British housebuilders were asked to extend Djenne or Timbuktu: these towns would look like the fringes of Doncaster or Telford. It would be good to see some of Britain's most inventive architects learning to wallow in mud. Jean Dethier is offering to show them how.
From BD (Building Design Magazine)

terça-feira, 24 de fevereiro de 2009

VIIIº SIACOT_IIº SAACT_2009

VIIIº SIACOT
SEMINARIO IBEROAMERICANO DE CONSTRUCCIÓN CON TIERRA
IIº SAACT
SEMINARIO ARGENTINO DE ARQUITECTURA Y CONSTRUCCION CON TIERRA
Tucumán, Argentina, 08 al 13 de junio de 2009
Lugar de realización:
CRIATiC - FAU / UNT Avda. Roca 1800. San Miguel de Tucumán, Argentina

Responsable:
Prof. Arq. Rafael F. Mellace - Director del CRIATiC

Co-responsable:
Dra. Arqta. Silvia Cirvini - Directora INCIHUSA

Aprobado por:
Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT)
Ministerio de Ciencia, Tecnología e Innovación Productiva / Presidencia de la Nación
Objetivos
Ambos Seminarios apuntan a un doble objetivo: por una parte, reunir a los científicos, tecnólogos y profesionales que trabajan en torno al tema para analizar, desde el pasado hacia el presente, tanto lo referente al patrimonio cultural, como al estado actual de la tecnología de construcción con tierra. Por otra, habilitar un espacio de discusión que permita examinar el desarrollo de los programas y proyectos en marcha, evaluando posibles resultados hacia futuro.

En tal sentido, las acciones fundamentales se dirigen a actualizar, registrar, discutir y difundir los avances producidos en las investigaciones tecnológicas y las innovaciones propuestas para el diseño, la producción y la conservación de la arquitectura de tierra en diversos contextos regionales. Al mismo tiempo, estimular el intercambio de experiencias, fortalecer las relaciones técnico-científicas entre organismos, centros de investigación y profesionales de Iberoamérica vinculados a la disciplina y trazar los lineamientos de posibles programas que puedan implementarse en el futuro.
Destinatarios
Los Seminarios están dirigidos a profesionales arquitectos, ingenieros civiles y constructores, ambientalistas, geólogos, antropólogos; a maestros de obra, artesanos, técnicos y estudiantes de cualquiera de estas disciplinas.

Áreas temáticas
A fin de permitir una evaluación general del campo del saber y práctica del arte, las conferencias, ponencias de base, comunicaciones, pósters o exposición de trabajos se encuadrarán en las siguientes áreas temáticas:
I_ Presente y porvenir de la arquitectura y de la construcción con tierra: El estado del arte; problemas críticos relevados

II_Arquitectura de tierra y medio ambiente: Creatividad y sustentabilidad

III_Investigación y desarrollo tecnológico: Materiales, componentes, sistemas y procesos constructivos. Resistencia y durabilidad / Sismo y humedad

IV_Patrimonio edilicio: Inventario. Intervención. Preservación / restauración. Patrimonio turístico, gestión y gerenciamiento. Difusión

V_Normalización: Estado de la cuestión. Normas y recomendaciones técnicas. Alcances y ámbitos de aplicación

VI_Proyectos ejemplares: Diseño, construcción y mantenimiento. Vivienda social, individual. Prototipos y transferencia

VII_Educación, Formación y Capacitación: Recursos humanos, profesionales, técnicos y artesanales
Instituciones que auspician el evento

UNT - Universidad Nacional de Tucumán
FAU - Facultad de Arquitectura y Urbanismo
SIDETEC - Secretaria de Estado de Innovación y Desarrollo Tecnológico de Tucumán
CRICYT- Centro Regional de Investigaciones Científicas y Tecnológicas, Mendoza
PROTIERRA - Red Argentina de Promoción y Difusión de la Arquitectura de tierra. Tucumán
PROTERRA - Red Iberoamericana de Arquitectura y Construcción con Tierra. México DF
Comité Científico
_Guerrero Baca, Luis Fernando
Doctor Arquitecto, UAM, Azcapotzalco, México. Máster en Arquitectura, Restauración de Monumentos. ENCRyM – INAH
_Cirvini, Silvia Augusta
Directora del Programa AHTER (Arquitectura, Historia, Tecnología y Restauración) - INCIHUSA (Instituto de Ciencias Humanas Sociales y Ambientales – CCT Mendoza (Centro Científico Tecnológico - Mendoza, Argentina)
_Guillaud, Hubert
Architecte DPLG, Maître STA, Ecole d'Architecture de Grenoble. Directeur scientifique du Laboratoire de recherche CRATerre-EAG ; Responsable de la Chaire UNESCO Architecture de terre, Cultures Constructives et Développement Durable
_Rotondaro, Rodolfo
Arquitecto UNMP. Máster CEAA-terre, Esc. Arquitectura de Grenoble, Francia; Investigador científico CONICET. Instituto de Arte Americano, (FADU/UBA)
_Martins Neves, Celia
Ing. Civil, Mestre em Engenharia Ambiental Urbana. Pesquisadora do CEPED - Centro de Pesquisas e Desenvolvimento; Universidade do Estado da Bahia.
_Gonzalez, Ariel
Ingeniero. UTN. Máster Metodología de la Investigación Científica, UNER; Especialista Control de Vectores, y Agentes en la Vivienda, Organización Panamericana de la Salud.
_Paterlini, Olga
Doctora Arquitecta, UNT. Profesora Titular Historia de la Arquitectura y Profesora Magister en Historia de la Arquitectura y el Urbanismo Latinoamericanos, FAU/UNT
_Mellace, Rafael
Arquitecto, UNT; Máster (Candid.) UBB-Chile. Profesor Titular Disciplina Construcciones. Director Académico CRIATiC, FAU/UNT
Comisión Organizadora
_Arqta. Stella Maris Latina
_Arqta. Mirta Eufemia Sosa
_Inga. Lucía Elizabeth Arias
_Arqta. Irene Cecilia Ferreyra
_Ing. Carlos Eduardo Alderete
_Dra. Silvia Augusta Cirvini
_Arq. Rafael Francisco Mellace
Modalidades de participación - Inscripción
Se podrá participar en este evento en calidad de ponente, expositor o asistente. La presentación de trabajos -ponencias, comunicaciones, póster o afiches- deberán ser inéditos y encuadrarse en alguna de las citada áreas temáticas.

Ponencias / comunicaciones
Se enviarán resúmenes en archivo tipo MS Word, con una extensión de 250 palabras como mínimo y 500 como máximo. Formato A4, con márgenes, superior 3cm.; izquierdo 3cm.; derecho e inferior 2,5cm.
Fuente Arial 11; texto sin sangría, a un espacio y medio.
Deberá contener en el encabezado:

_Título del trabajo: mayúsculas y negrita
_Nombre del autor o de los autores: tipo título y negrita
_Institución que representa: tipo oración, sin negrita.
_Dirección electrónica, teléfono y fax. (ídem anterior)
_Área temática en que se encuadra la comunicación. (ídem anterior)
_Palabras clave: hasta cuatro, tipo título y negrita

A pie de página se incluirá un breve currículum del autor / autores en un máximo de 5 renglones.

Pósters / afiches
Para la presentación de pósters se enviará un breve resúmen (hasta 250 palabras) en archivo tipo MS Word. Formato A4, con márgenes, superior 3cm.; izquierdo 3cm.; derecho e inferior 2,5cm.
Fuente Arial 11; texto sin sangría, a un espacio y medio, donde constará:

_Título del trabajo
_Autor/es. A pie de página incluirá un breve currículum del o de los autores con un máximo de 5 renglones
_Institución que representa. Dirección electrónica, teléfono y fax
_Área temática en que se encuadra
_Palabras clave: 3 en normal y tipo título

Recepción de trabajos

Ponencias / comunicaciones
La fecha límite para la recepción de los resúmenes será el 7 de marzo de 2009
Los trabajos in extenso (cuyos resúmenes hayan sido aceptados) se recibirán hasta el 25 de abril de 2009

Pósters / afiches
La fecha límite para la recepción de los resúmenes de afiches será el 25 de abril de 2009
Los pósters o afiches impresos (cuyos resúmenes hayan sido aceptados) se recibirán hasta el 30 de mayo de 2009

Idiomas oficiales
A los fines de la presentación de trabajos -ponencias, comunicaciones, póster o afiches- seran oficiales de estos encuentros, los idiomas castellano y portugués

Información
CRIATiC
:
Av. Roca Nº 1800 - CP 4000 - San Miguel de Tucumán, Argentina
Tel 54 381 436 4093 (int 7919/7912) Fax 54 381 436 4141
Correo electrónico
criatic@herrera.unt.edu.ar
Sitio web:
www.criatic.com.ar

Standard Code of Practice for Rammed Earth Structures_Zimbabwe

'The Zimbabwe Standard Code of Practice for Rammed Earth Structures’






segunda-feira, 23 de fevereiro de 2009

Texto_Technology for architects keen on low-energy design

Aqui fica um texto em inglês sobre a realidade da construção em Taipa no Reino Unido, mas que diz muito da técnica e do futuro das construções sustentáveis.
"
Technology for architects keen on low-energy design

Rammed earth is going mainstream as a result of its insulation and sustainability
properties.

There's no shortage of smart technology for architects keen on low-energy design. Glasscovered
Trombe walls, brises soleils and innumerable permutations of highly insulated curtain wall are today's mainstream technology. But how much of this innovation is just a solution looking for a problem? Are complex multi-layered building envelopes really more effective at temperature and energy control than a basic mud hut?

Proponents of rammed wall construction would argue the toss. They would point out that earth is free, earth is plentiful, and when compressed it has excellent thermal and acoustic insulation properties. All one has to do is excavate the soil, add a chemical stabiliser such as lime or sugar paste, compact the earth between wooden formers, and hey presto, you have a durable, strong and highly insulated wall.

The build process is simplicity itself. The selected soil is mixed to the right consistency, then compacted in layers using hand tools. Formers are used to act as a mould for thewall. Other materials can be added to improve compaction, such as ground glass, shredded rubber tyres or natural fibres. Once the wall has been constructed, the formers can be removed. The wall is immediately ready to take structural loads. Rammed earth walls used as internal partitioning can also suppress noise transfer between rooms very effectively. At the Eden Centre in Cornwall, the walls of the visitors' centre were built from earth excavated on site. The soil was compacted by hand to form 40 panels, each 2.5m high and weighing around 10 tonnes. The walls were strong enough to support themselves without reinforcement on the day they were built, and to support the roof loads of the centre. But while it's not surprising to find rammed earth walls at beacons of sustainability such as the Eden Project, the technology is also turning mainstream. Newcastle based architect Jane Darbyshire & David Kendall (JDDK) has designed Europe's largest internal rammed earth wall for the Rivergreen Business Centre at Aykley Heads in Durham.

Interestingly, the decision to create a rammed earth wall in the Aykley Heads project was driven by the client, Rivergreen Developments. The company had seen an earth wall at the Autonomous Environmental Information Centre (AtEIC) project at the Centre for Alternative Technology in Powys, and was keen to try the technique as part of its commitment to sustainable construction.
"We visited the AtEIC project with the client and were very impressed with the thermal and aesthetic qualities of the rammed earth wall," said JDDK's project architect Ruth Walters. "Although we didn't have any experience with the technology, the client was willing to take the risk. We also worked with consultants experienced in designing and building rammed earth walls."

The 6m-high, 600mm-thick rammed earth wall brings environmental benefits, because it uses natural materials readily available on site; and performance benefits because it offers a relatively cheap and simple method of creating a high thermal mass within the building to even out swings in temperature. It is also believed to help control moisture in the building.

The wall has been constructed in six separate panels inside the atrium of the 3,700sq m, two-storey, timber-framed building. Being south-facing and subject to direct solar gain, the wall absorbs the sun's energy during the day and releases it at night and early morning to preheat the adjacent offices prior to occupation.

The rammed earth wall is the most innovative of the building's sustainable features, which include space heating provided by a biomass boiler fed with wood pellets, and collecting rainwater for toilet flushing and irrigating the building's sedum roof. These helped it achieve an "excellent" Breeam rating. Approximately 80% of the material used in the wall's construction is fine sand obtained from the basement excavation. The remainder consists of gravels and clay from local quarries. The success of the method depends upon the proportions of the mix and the
overall moisture content, which will be unique to every wall.

Since there is no firing process and no toxic emissions, the amount of CO2 emitted depends solely on the transport requirements for additional materials, such as clay and chemical stabilisers. The Aykley Heads wall used 60% site material, with the remaining 40% transported in.

For the project, JDDK commissioned Bath University's Department of Architecture & Civil Engineering to develop the optimum blend of clay, sand and gravel and advise on improvements to the soil to improve compaction and cohesion. The team constructed sample panels to check stress resistance. JDDK's Walters feels this was a crucial step. "We would stress the importance of getting sample panels made and testing them for their aesthetics as well as their durability," she says.

Following its success at the Aykley Heads centre, JDDK Architects has since specified an external rammed earth wall for the £4.1 million Wild Bird Discovery Centre on Teesside. "The main risk is to do with controlling the shrinkage of the wall," says Walters. "At Aykley Heads we were able to build in a controlled environment - it's much easier to build internally. But we still made the wall in six separate panels, with expansion joints between them."

Other downsides of rammed earth construction include a lack of national guidelines for design and construction, higher labour costs for the compacting process, and limited data on the materials' physical characteristics. There is no shortage of guidelines for hot countries such as Australia, but very few in the UK.

The most recent guidance is a BRE book Rammed Earth: Design and Construction Guidelines published last year. It gives practical advice on the material selection, construction, design, detailing, maintenance and repair of rammed earth walls. JDDK relied heavily on Simmonds Mills, a Hereford-based firm which acted as the rammed earth consultant for the AtEIC project and led the team that constructed the walls. At Aykley Heads, it advised JDDK on soil types, shuttering and construction methods, and trained the construction operatives in earth-ramming techniques.
In common with many construction materials, the thermal performance of a rammed earth wall depends on its density, porosity and water content. Rammed earth walls between 1,400 and 1,800 kg/cu m can have thermal conductivity U-values of 0·7 to 0·9W/sqmK. As a comparison, the CIBSE Guide quotes thermal conductivity of 0·51W/sqmK at 1,400 kg and 0·87W/sqmK at 1,800 kg for homogenous masonry.
Allowing for normal internal and external surface resistances, and assuming the wall will be rendered and plastered, a nominal wall thickness of 2m may be needed to achieve a Uvalue of 0·35W/sqmK. Additional insulation is likely to be needed where rammed earth walls are used externally. Insulation would be best placed on the external elevation, leaving the internal spaces to take advantage of the wall's thermal mass.

Essentially, any finish that can be applied to brick or concrete can be applied to a rammed earth wall, such as tiling, rendering, lime washes, pebbly finishes or a clear coating of silicon emulsion to seal the earth. Environmentally friendly surface treatments include boiled vegetable extracts.
Undoubtedly rammed walls are a worthy contribution to sustainable architecture, but their use will not outweigh the energy used by conventional gas-fired heating or electrically powered ventilation. Architects seeking to reduce carbon dioxide emissions need to approach rammed earth walls as part of a wider strategy to reduce CO2 emissions. One thing they must not become is lipstick on the gorilla.

From http://www.simmondsmills.com/

Date: 13/05/2006

"

FILMES de TERRA

Aqui postamos os inúmeros filmes que encontramos na internet sobre construção com terra crua.

Basta seguir os links:

Construction en pisé au Maroc
La technique de batiment pisé au Maroc
Rammed Earth Construction from the Ground Up
Chapel of Reconciliation Berlin
Sassenroth & Reitermann: Chapel of Reconciliation, Berlin
Sassenroth & Reitermann Chapel of Reconciliation Berlin_1
Martin Rauch
FIRST EARTH (2/12) - Uncompromising Ecological Architecture
FIRST EARTH (7/12) - Uncompromising Ecological Architecture
Rammed earth in Hassilabied_Morocco
Sistema Construtivo COMTERRA - Barrocal
Visita a Aveiro - FILME 1_parte 1/3
Visita a Aveiro - FILME 1_parte 2/3
Visita a Aveiro - FILME 1_parte 3/3
Visita a Aveiro - FILME 2
Arquitetura de terra - taipa de pilão
Cob Earth Home_1_Saudi Arabia
Cob Earth Home_2_Saudi Arabia
Cob Earth Home_3_Saudi Arabia
Cob Earth Home_4_Saudi Arabia
Cob Earth Home_5_Saudi Arabia
Cob Earth Home_6_Saudi Arabia
Cob Earth Home_7_Saudi Arabia
Cob Earth Home_8_Saudi Arabia

sábado, 21 de fevereiro de 2009

Heritage of Hassan Fathy

Mostramos agora informação sobre a vila egípcia New Gourna, construída segundo técnicas de construção com terra crua - projectada pelo arquitecto Hassan Fathy - presentemente ameaçada por falta de manutenção e a construção de novas edificações sem respeito pelo património e as técnicas com terra aplicadas.

A International Association for the protection and conservation of the heritage of Hassan Fathy de que já falámos aqui tem procurado desde a sua criação aumentar a sensibilização da opinião pública para a importância da obra do Arquitecto egípcio, criando uma plataforma de intercâmbio entre as instituições envolvidas (públicas e privadas) e Universidades, promovendo a protecção, conservação e salvaguarda deste património fantástico.

Aqui fica a mensagem da associação:

"Dear all,
Following the international expertise mission organized by the Association in New Gourna from 22 to 27 January 2009 an article entitled "Disaster in New Gourna" was published in the Magazine Akher Saa. You can view this article in the "News" page of our blog
www.fathyheritage.com
The participants of the mission (International and Egyptian experts) observed a number of preoccupying problems in the village but were particularly alarmed by the construction of two administrative buildings which has begun two months ago just behind the Theatre. Egyptian authorities have been alerted and urged to implement conservatory measures.
An international Symposium organized by the Association will be held at the Bibliotheca Alexandrina (Alexandria, Egypt) on 30-31 May 2009. The Symposium will bring together Egyptian and international experts to discuss the future of the village of New Gourna and define the different possible scenarios for a sustainable conservation and restoration program.
Prior to the symposium, the issue of New Gourna will also be presented by Dr Leïla el-Wakil, President of the Association, during the first Mediterranean Conference on Earth architecture, Mediterra 2009, held in Cagliari (Sardinia, Italy) on 13-16 March 2009.
The Association thanks you once again for supporting and encouraging its endeavours
The founder members:
Leïla el-Wakil, President Rachida Teymour, Vice-President Nadia Radwan, Secretary

quinta-feira, 19 de fevereiro de 2009

Norma UNE 41410:2008_Espanha

Esta notícia é fresquinha e já está disponível, uma nova norma sobre construção com terra em Espanha.

A norma é a UNE 41410:2008
“Bloques de tierra comprimida para muros y tabiques. Definiciones, especificaciones y métodos de ensayo”


Esta é a primeira normativa espanhola não experimental de um Organismo de Regulamentação Europeia.
Após alguns anos de trabalho, o subcomité AEN/CTN 41 SC 10, da Asociación Española de Normalización (AENOR), entidade de regulamentação espanhol, responsável pela elaboração das normas espanholas (Normas UNE), semelhante a outros organismos europeus DIN (alemão) e o AFNOR (francês), elaborou e aprovou a Norma UNE 41410.

Ela foi criada, segundo a AENOR, pela necessidade de caracterizar o material, descrevê-lo e conhecer as propriedades da matéria-prima e os produtos associados, assim como os testes e ensaios necessários.

Um agradecimento especial a Ignacio Cañas pela informação e um recado aos legisladores Portugueses, num país que legisla tanto e sempre a reboque dos demais, está na hora de olhar para a construção com terra com o reconhecimento e a importância que ela merece.

quarta-feira, 11 de fevereiro de 2009

Artigo_Materials World_Feat of Clay_Tom Morton

Postamos agora um interessante artigo de pesquisa de Tom Morton, Arquitecto da Arc Architects, da Escócia, UK, publicado na Materials World em Janeiro de 2006.

FEAT OF CLAY
Moves to develop UK production of unfired clay bricks are driven by the growing demand for sustainable construction materials to displace conventional products. Tom Morton, Principal Architect at Arc, Fife, UK, examines the key factors in achieving a scale of use that would yield significant benefits, such as standardisation and low cost.

The main advantages of using unfired clay as a binder in building materials instead of cement, gypsum or fired clay are a healthy indoor environment and low environmental impact over the whole life cycle of the material.
These attributes have been well established over the last fifteen years in Germany, where a small specialist construction sector has experienced sustained growth through the development of national standards in using unfired clay and the use of sophisticated products in prestige projects.
But application in the UK has been hampered by the lack of guidance and standardisation in available materials and the expense of importing modern products from Germany. The development of best practice guidance and low cost materials manufacturing in the UK would remove significant barriers. Attention now focuses on ways to realise this shift in attitude.
In order to assess the potential of unfired clay bricks in the UK, a test house was built and monitored in a research project funded by the DTI Partners In Innovation programme. This two-year project reveals the technical advantages of using unfired clay materials and highlights practical implications of their use.
Low impact manufacturing Unfired clays are natural materials with varying properties, commonly combined with fine aggregates and fibres to make a range of products such as bricks, blocks, boards, mortars and plasters. Clay materials produce very little waste, as there is no fundamental chemical change or ceramicisation involved in their manufacture and use. The materials are easily recycled or cleanly disposed of.


Although clay manufacture uses a finite resource, the environmental impact can be benign, with low value agricultural land being transformed into biodiverse wetland habitats.
Sources of clay are shallower and less remotely located than sources of gypsum and cement or lime.
Unfired clay materials also have relatively low embodied energy and carbon. The brickwork in the test house had embodied energy of 146 kwh/tonne and embodied carbon of 44.6 kgCO2/tonne. This is about 14% of comparable fired brickwork and 24% compared to light-weight blockwork. While the bricks were removed from production before kiln firing, they still required two days of artificial air drying.
The estimated saving in this building is 24.9MWh and 7036kg of CO2 over common bricks, and 14.5MWh and 4104kg CO2 over light-weight concrete blocks.

Healthy living
An ability to regulate moisture is another key quality of unfired clay materials. Their hygroscopic scope to absorb and desorb atmospheric moisture allowed the 15mm clay plaster surface in the house to strongly regulate short-term peaks. In the bathroom, the clay plaster had such a strong ability to absorb peaks of air moisture after showers that it cleared the air without surface condensation. The effect of the extractor fan was of no statistical significance.
The brick core had a longer term moderating effect, peaking at two hours after exposure to moisture, but continuing for over 24 hours.
The ability of a building’s fabric to passively avoid conditions where condensation will occur improves its long-term durability and avoids the need for vapour control membranes, which are prone to defects from poor workmanship.
However, the main advantages in moisture terms are to human health through the regulation of internal air relative humidity (RH).

The UK has some of the highest rates of asthma in the world and allergens from house dust mites are known to cause asthmatic sensitisation and trigger symptoms. Recent research recommends maintaining internal RH below 60% to ensure that the dust mites critical equilibrium humidity will not be reached.

Designing dwellings with a high level of insulated thermal mass can help to achieve this. Allergy to mould spores is a major health risk associated with fungi in buildings, and the inhalation of mould spores can also cause toxic reactions and cancer. Relative humidity levels below 70% are thought to avoid mould growth.
Avoidance of high RH levels can also reduce the viability of bacterial disease transmission. Although low relative humidity can cause respiratory disease through the drying of the throat, the risk is considered less than that presented by dust mites and mould at high humidity levels.
When monitoring the test house, the target of regulating levels to between 40% and 60% was generally met. While there were short-term values outside this range, these were attributable to periods of very high ventilation or the use of showers. While external air relative humidity fluctuated considerably, between 24.9% and 96.1%, the mean external value was around 65%, while the mean internal value was around 45% (see graph).
All images ©Arc

Comfort levels
Used on the inside of a layered construction, the unfired clay bricks made a significant contribution to thermal comfort, with warm surfaces and thermal mass that moderated atmospheric temperature swings for up to a week. Effective U-value (the rate of heat loss) of the walls was 32% better than the design calculation, though the reason for this was unclear. The improvement may relate to optimisation of the density of the cellulose insulation or a better than predicted performance by the earth brick and plaster related to air in the earth pore structure.
Occupants of earth buildings often report better perceived thermal performance than is predicted by steady state U-value calculations, which can prove inaccurate predictors of real building performance for a number of reasons.
Whatever the explanation, the walls of the building performed significantly better than was indicated by the design calculations and exceeded the requirements of the contemporary building regulations.

Down to earth
The future for earth construction in the UK remains uncertain. Unfired clay's fundamental properties as a flexible, healthy, low-energy binder give it great potential in an evolving sustainable construction industry. Earth masonry construction is simple and cheap, and could help establish a basic mass-market for earth materials in the mainstream sector, fostering more exciting research and development into prefabricated composite materials and spray applications.
But the commercial reality is that while some major brick producers are developing unfired products, the kind of investment that is needed for a progressive leap is still some way off.
Further information
Arc Architects led this research in association with Dundee University, UK, and Robert Gordon University, UK.
Tom Morton is the Principal Architect at Arc Architects, 69 Burnside, Auchtermuchty, Fife KY14 7AJ, Scotland. Tel/fax: 01337 828644

terça-feira, 10 de fevereiro de 2009

Curso_Taller Construccion Alternativa en Tierra_Argentina

Curso-Taller Construccion Alternativa en Tierra de
BLOQUES DE SUELO-CEMENTO - ADOBE - RECONOCIMIENTO DE SUELOS APTOS
en San Carlos de Bariloche, Argentina
Organizan
Grupo de Construccion Natural Bariloche
Fecha
19, 20 y 21 de febrero de 2009
Equipo Docente
Arq. Juan Carlos Patrone (FADU-UBA/terrabaires)Arq. Liliana Alvarez (Asociacion Proteger/GEA Argentina)
Arq. Rodolfo Rotondaro (CONICET/terrabaires)
Modalidad:
Curso intensivo con clases teóricas y práctica constructiva para el conocimiento de materiales,componentes básicos, y manejo de herramientas y equipos. Debate y discusión con alumnos.
Total: 25 hs.
Destinatarios:
Pobladores y albañiles, autoconstructores,Técnicos y profesionales, Maestros,Líderes comunitarios, Funcionarios ONGs y fundaciones, Instituciones públicas y privadas
Cupo
Min. 20 - Max. 30 alumnos
Costos
Costo de capacitación total: $ 250,-
Inscripcion
Durante enero 2009 con pago 50% anticipado y resto 1ra. semana de febrero
Temario a desarrollar
DIA 1 / Introducción.
1era. Clase: Presentación del tema "Construcción con Tierra".
Conceptos básicos teóricos.
Panorama global. Distribución. Alcances. Avances en el país. Construcción con tierra y vivienda.
2da. Clase: Relación con la sostenibilidad.
Construcción Bioclimática en tierra.
Protocolo de Kyoto y Agenda 21 (municipios saludables)
La tierra como material sano.
3ra. Clase: El material y sus propiedades
Suelos aptos para construir. Identificación, compactación, estabilización.
Sistemas constructivos. Resistencias, durabilidad.
Taller 1: Identificación y análisis de suelos. El material base y su identificación. Ensayos sensoriales (sedimentación, resistencia en seco, cohesión).
Ensayo de contracción lineal (caja Alcok).Mezclas. Resistencias. Criterios de selección.
DIA 2 / Adobe tradicional.
Taller 2: Fabricación de adobes y control de calidad. Taller práctico sobre construcción con adobe, componentes básicos para mampostería de tierra.
Diseño de materiales y moldes. Preparación de la tierra. Preparación de la mezcla.
Fabricación. Secado. Acopio.Ensayos de campo para control de calidad. Organización de obra.
4ta. Clase: Construcción con tierra en zonas sísmicas. Conceptos generales. Zonificación.
El proyecto en zonas sísmicas. Diseño tecnológico. Refuerzos. Calidad constructiva. Prevención.Antecedentes en el país y la región.
DIA 3 / Bloque de tierra comprimida BTC.
Taller 3: Fabricación de bloques de tierra comprimida y control de calidad.Taller práctico sobre construcción con BTC. Componentes básicos para mampostería. Diseño de materiales. Utilización de la prensa. Preparación de la tierra. Preparación de la mezcla.
Fabricación. Secado. Acopio.
Ensayos de campo para control de calidad.Organización de obra.
5ta. Clase: Criterios de BioarquitecturaRespeto al lugar e integración en su entorno. Clima y orientación. Diseño armónico: diseño personalizado según necesidades del usuario y adecuada distribución de espacios.
Ahorro de energía y agua. Uso de energías renovables. Empleo de materiales saludables y biocompatibles. Optimización de recursos naturales. Equipamiento de mobiliario de bajo impacto. Programa de tratamiento de elementos residuales y manual de usuario para su utilización y mantenimiento.
Cierre de los talleres de práctica.
Informes
Sandra 441768
Carlos 461451
CONSTRUIR CON TIERRA
Desde hace más de treinta años las construcciones de tierra son objeto de análisis,promoción, difusión, enseñanza y transferencia en todo el mundo, mediante actividades que van desde el simple mejoramiento de los suelos hasta proyectos y obras complejas.
El uso del material y sus técnicas constructivas son importantes en la actualidad como unrecurso alternativo en la búsqueda de soluciones habitacionales de bajo costo,
aprovechando la mano de obra local.
SITUACION DE CRISIS
Argentina cuenta con un importante patrimonio construido con tierra: vivienda popular, sitios arqueológicos, pueblos, iglesias, cabildos, postas, estancias, edificios coloniales, equipamiento, canales.
Diferentes organismos estatales y ONGs trabajan con las comunidades en diversos puntos del país, con proyectos y obras, pero es aún una posibilidad poco explorada y explotada.
Esta tecnología puede aportar alternativas constructivas sustentables al sector Vivienda, para contribuir con nuevas estrategias de desarrollo.
VENTAJAS Y LIMITACIONES
_Bajo costo cuando el suelo apto está cerca;
_Las técnicas de fabricación y de producción son de baja complejidad;
_Es posible capacitar a los autoproductores de vivienda con un entrenamiento sencillo;
_Es factible organizar microempresas con generación de empleo genuino;
_Es necesario desarrollar la técnica en forma correcta para evitar problemas de fisuración
y de cohesión interna.
OBJETIVOS
_Promover la creación de microempresas vinculadas con la construcción;
_Brindar apoyo al autoproductor de vivienda;
_Capacitar recursos humanos en forma introductoria en el tema "bloques de suelo-cemento" y su aplicación en la construcción;* estimular el aprendizaje de una de las formas económicas de construir utilizando tecnología apropiada.
ANTECEDENTES GENERALES
_Ensayos simples de suelos en laboratorio y a campo (desde 1990)
_Cursos de bloques de suelo-cemento en varias provincias / (2002 a 2006)
_Diseño y experimentación de bloques, muros, cubiertas, cielorrasos y prefabricados con tecnología de tierra, en Buenos Aires, Jujuy, Tucumán, y Bolivia (desde 1992)
_Cursos y talleres sobre Construcciones de tierra (vivienda, elementos constructivos, desarrollo sustentable para el habitat) en el Noroeste y La Plata (desde 1992)
_Asesorías a pobladores, centros vecinales, municipios, ONGs y empresas en Buenos Aires, Noroeste argentino y Uruguay (desde 1995)
_Curso-taller del Grupo Tierra Tucumán (FAU UNT), Laboratorio de Materiales y Elementos para Edificios, Tucumán (2001)
Muchas gracias e obrigado aos amigos Juan Carlos Patrone e Jose Maria Sastre do Arqui-terrapor nos fazerem chegar informação sobre o curso que agora divulgamos.

Arq_Terra_Vigilius Mountain Resort_Merano_Itália


San Vigilio, near Merano, stand along the Valle dell’Adige 1500 metres above sea level. Nowadays Vigilius Mountain Resort, an extension to the old Vigiljoch Hotel, can still only be reached by cable car or on foot, just one special feature of the special way it interacts with surrounding nature.
This long construction, which runs from north to south with two floors above ground and a basement, gently follows the contours of the mountainside.
Reinterpreting traditional local wooden constructions, it is made of stone, wood, rammed earth and glass.
Only the basement areas are made of reinforced concrete.
In each room, all facing east or west, rammed earth walls separate the sleeping quarters from the bathroom.
But that is not all: they absorb and then give off heat in winter and coolness in summer.
The accessible landscaped roof helps prevent overheating while the large glass windows exploit solar energy, adjustable shutters on the façade control the mount of shade.
Class A architecture, won the WWF’s Golden Panda Award in 2006 and
the Legaambiente/Lombardy Region Award in 2006.


Client: Private Owner
Location: Lana - Merano
Country: Italy
Intervention Type: Architecture, interior design, styling, corporate identity
Project Manager Architecture: Bruno Franchid, Matteo Thun
Interior design: Michael Catoir
Team Architects: Christine Arnhard, Gioia Gaio, Renato Precoma, Christina Von Berg
Interior designers: Ulrich Pfannschmidt
Light designer: Simone Fumagalli
Stylist: Gunhild Breloh
Graphic designer: Dorothee Maier
Start Date: 2001
End Date: 2003
Total Building Area:11.500 m2
Building Use: 5-star Hotel and spa resort
Room Type: 35 rooms, 6 suites
Public Areas: Lounge, conference rooms, show room and self service for 300 people
San Vigilio, perto de Merano, localiza-se ao longo do Valle dell'Adige, 1500 metros acima do nível do mar.
Em 1913, foi construído um dos primeiros teleféricos do mundo para chegar a San Vigilio.
Actualmente o Vigilius Mountain Resort, uma extensão do antigo Vigiljoch Hotel, pode apenas ser alcançado por teleférico ou a pé, apenas uma característica especial da forma como ele interage com a natureza circundante. Esta longa construção, que segue de norte a sul com dois pisos acima do solo e uma cave, segue suavemente os contornos da encosta. Em torno uma rede de percursos reforça a ligação entre o edifício e a topografia da envolvente. Reinterpretando as tradicionais construções locais em madeira, o edifício é construído em pedra, madeira, terra e vidro. Apenas as áreas em cave são feitas em betão armado reforçado.

Partindo do foyer de entrada e passando pelo salão, biblioteca e dois restaurantes (um deles com o uso de madeira retirada de um antigo chalé de montanha), o Resort estende-se ao longo de dois níveis numa sequência de quartos (41 no total, incluindo 6 suites) alternando de modo dinâmico com os espaços exteriores.
No extremo sul do empreendimento encontra-se um SPA ao longo de três níveis e uma piscina, passando por um jardim interior plantado com árvores lariços que formam um autêntico fragmento da região florestal integrada no Arquitectura.
Em cada quarto, todos virados para Leste ou Oeste, robustas paredes em taipa/rammed earth terra battuta separam a zona de dormir da casa de banho. Elas têm por objectivo absorver e libertar calor no Inverno, mantendo-se frescas no período de Verão.

O desenho do telhado acessível ajuda a evitar o sobreaquecimento, enquanto as grandes janelas de vidro exploram da melhor forma a energia solar e as persianas ajustáveis sobre a fachada controlam o emsombramento. Tudo é devidamente detalhado, o controlo da ventilação com recolha de calor e a utilização de painéis radiantes nos interiores, bem como o aquecimento por biomassa que permite para ajudar os agricultores locais e salvaguardar as florestas envolventes, com a utilização de madeira de baixa qualidade como fonte de energia na forma de pellets.
Vigilius Mountain Resort é assim uma suave e elegante estância turística abrangendo um total de 1400 metros quadrados, um luxuoso edifício em harmonia com a paisagem, que propícia uma mistura de bem-estar e sofisticação para os utilizadores, e uma proposta sustentável para o ambiente.


Classe A de Arquitetura, o Vigilius Mountain Resort ganhou entre outros o WWF's Golden Panda Award e o Legaambiente / Região Lombardia Prêmio, ambos em 2006.

sexta-feira, 6 de fevereiro de 2009

Rammed Earth_With a veneer of science_David Oliver


Rammed Earth - with a veneer of science
David Oliver, an australian architect from Queensland has spent a significant part of his professional life applying science to the simplicity of rammed earth construction. He is now recognised as a world leader in rammed earth technology and a significant driving force behind environmentally sustainable design in Australia. Along the way, David, who is based at Mooloolaba, on Queensland's Sunshine coast, has lifted the standing of the still-simple rammed earth technique to the same level as other 'conventional' construction methods.
David is the principal of his own architectural firm and its companion consultancy which is the vehicle for his pioneering technical work in rammed earth construction. He believes rammed earth will become ever more widely accepted and used over the next decade as more people become aware of it, and as the relative cost of other building materials increases - something he believes is inevitable.
"I believe rammed earth construction will become accepted as standard throughout Australia, with sub-contractors and builders who will specialise in the technique."


"There are already more than a dozen contractors around Australia specialising in rammed earth construction."
"Rammed earth has significant environmental and aesthetic appeal, and construction costs are comparable to the cost of building in cavity brick. It also has very good thermal modulation and acoustic insulation properties."
"The aesthetic appeal is very strong because rammed earth construction reflects, without interpretation, the natural colours of the locality."
"The colours of rammed earth buildings vary from district to district, depending on the colours of the materials available in the local area."
"Perhaps the strongest environmental benefit from rammed earth construction is that there is no firing involved, as there is with brick and cement, so the product is very low in embodied energy.
"I expect the cost-balance to change to significantly favour rammed earth construction over the next ten years, as the cost of energy increases and carbon and energy taxes are imposed."
Rammed earth was relatively labour intensive - about 60 percent of the cost of rammed earth construction is labour, David said. A wall can be constructed at about the rate a tradesperson could lay a brick wall.
David attributes his initial interest in earth construction techniques to 'romanticism'. "I was of the 60's generation, which was strong on idealism, and as an architect imbued with a good measure of idealism, earth construction appealed.

"My interest developed long ago before 'sustainability' became an issue."
When he started investigating the potential of earth construction, it soon became apparent that, largely because of the labour requirement of many forms of earth construction, rammed earth was the only commercial option in the Australian context, and since the 1980s, David and his associates have concentrated on rammed earth techniques.
"Initially I started designing for rammed earth construction and trying to get other people to construct the buildings, but that proved very difficult so we decided to learn how to do it ourselves. That also proved difficult. We found there was a global lack of knowledge about what made one building successful - that is, structurally sound - and another not. We could identify the problems but no-one seemed to know the answers."
In 1985, David travelled through the western provinces of China to learn more about the traditional earth construction methods used there and the following year he gained a Churchill Fellowship which enabled him to visit France, Germany, Britain and south-west USA to learn first-hand about the earth building techniques used in those countries.


"Some of the rammed earth buildings I saw in France were stately homes and mansions which have stood for more than 300 years. Rammed earth was used in France in the mid 17th century where suitable raw material was available and many of those buildings are still in use and still recognised as outstanding examples of the architecture of the period. On that study tour, I found that Australians knew as much as there was known about what was involved in successful rammed earth construction. We were then, and still are, at the cutting edge of modern earth building".
David's focus on rammed earth led eventually to technical definitions of the 'mix' of ingredients necessary for reliable construction; a development which he sees as the key to the potential of rammed earth as a modern construction material. "We set out to work out why some mixes worked and others didn't, and the end result is a physical and chemical definition of the necessary mix characteristics based on standard engineering analyses".
He is also involved in the final stages of trialling additives which will stabilise clays -an essential ingredient of the rammed earth 'mix' - and so prevent degradation of rammed earth construction by water. "Too much water can, in some instances, destabilise the clay particles and break down the mechanical bond formed between the particles. We have identified and patented additives which prevent that."
David believes identification of the additives, and definition of the physical and chemical characteristics of the construction mix, are the two biggest steps forward in the technical development of modern rammed earth construction: "We have taken the guess work out of the process. We are still using the traditional methods - compacting earthen material between forms which determine the shape of the construction - but in the past, determining the material to be used was a matter of trial and error or traditional experience. We realised very early on that to work in the modern context, with formal engineering and structural specifications to meet, we needed to be absolutely certain that we could produce consistent, high-quality results every time, building after building, no matter where they were located.
"If rammed earth was to be accepted as a modern building technology, it needed to be applicable to all areas and had to be able to be analysed and understood so engineering tests could be undertaken. At the same time, we wanted to use local material. Knowledge of the essential physical and chemical characteristics of successful rammed earth mixes enables us to develop a technical description of the ideal mix, and we are able to blend local materials to produce mixes with those characteristics."
Access to that information was now available through David's consultancy service for architects, engineers and builders interested in working in rammed earth, David said.
"Using our knowledge of the characteristics required, we are able to combine local materials, usually from several quarries, to achieve a mix with the necessary physical and chemical properties.
The materials included in a mix, and the proportions to be used, were determined on the basis of standard engineering tests of physical and chemical characteristics, said David. "Once we have worked out the mix, construction is a simple matter of dampening and compaction, as has been done for centuries, although we use modern technology for the compaction and do use one or two additives. We add a very small proportion of cement - about five percent by weight - to maximise erosion resistance, and the new additive to prevent bio-degradation as a result of excess moisture will become a standard part of the mix."


"The mix consultancy is done long-distance, in much the same way as a soil test. The builder or the consultant identifies a source of material he or she thinks might be suitable and sends our company a sample. We do an analysis and if something is lacking, we tell them what else to look for. Alternatively, they might send us several potential ingredients and we analyse the raw materials and develop the mix that way. Once we have all the components, we calculate the proportions and after that it is up to them."
"The construction technique is very simple. The key to success, and the soundness of the building, lies in the mix used."
With the technical side under control, David and his associates set out to promote awareness and appreciation of rammed earth construction through its use in prestige buildings. "We formed a construction company specialising in rammed earth techniques and set about winning a major project to boost its profile. We needed to show that rammed earth was good structurally and, from a design perspective, complied with current design and technical requirements, and was cost effective. We reasoned that a major project would increase public awareness of rammed earth and we would see a 'trickle-down' effect, which has happened.
"We needed to convince people we could build practical, commercial structures."

David Oliver is head of Greenway Architects and CEAC building consultancy. For contact details, see the Alternative Directory under Architects or Earth Builders or Ethical Building/Design Advisory Groups.
All Photos were taken from http://www.stabilisedearth.com.au/index.html website, an australian rammed earth building company created in 1986 by Ian and Tina Collect.

domingo, 1 de fevereiro de 2009

Curso_Introdução_Arq_Terra_CEPA_Brasil

Nos dias 20, 21, 22, 23 e 24 de Fevereiro vai realizar-se o Curso de Introdução à Arquitetura em Terra promovido pelos amigos do CEPA_Centro de Educação e Pesquisas Ambientais, em Santo António do Pinhal, São Paulo.
Agenda
- Apresentação do Projeto CEPA e sua conceituação; programação completa das oficinas e cursos;
- A ocupação sustentável de espaços e a Arquitetura em Terra: vantagens ambientais e econômicas, conforto térmico e acústico;
- A Arquitetura em Terra (na história, no mundo, no Brasil, no Vale do Rio Paraíba do Sul) e sua revitalização atual;
- As técnicas iniciais adoptadas no Projeto CEPA e os laboratórios: um pouco de luz sobre as taipas de mão, de pilão, estruturas e restauros;
- A caracterização dos materiais utilizados (solo, argilas, areias, cal, aditivos, cimento, ferragem, bambu, madeiras, formas) e ferramentas;
- Análises, testes, ensaios;
- A taipa de pilão (adequação, projeto, materiais, execução, cuidados e informações especiais);
- a taipa de mão (idem com oficina);
- o adobe (idem com oficina);
- o tijolo prensado BTC (idem);
- acabamentos (massas e tintas), proteção e conservação;
- restauros (prevenção, conservação, materiais, execução);
- parcerias do CEPA para o desenvolvimento da Arquitetura em Terra;
- conclusões.
Os orientadores para o curso serão:
- Paulo Sérgio Ortiz, Arquiteto e Especialista em Restauro de Patrimônio Histórico
- Fabio Ortiz Jr, Geólogo e Educador Ambiental
Mais informações:
Fabio Ortiz Jr
CEPA - Centro de Educação e Pesquisas Ambientais
Pousada dos Mulungus (12) 3666-2228
fortiz@cepa.tur.br