Páginas

30 novembro 2023

Exemplo_Cemitério de Eschen_Liechtenstein_2012

Cemitério de Eschen, Liechtenstein

Muros de taipa (terra apiloada), 
sistema construtivo auto-portante e pré-fabricado
Área global 125 m², aprox. 112 t
Ano: 2010 − 2012
Cliente: Paróquia de Eschen
Arquitectura: Hans-Jörg Hilti
Conceptualização: Martin Rauch
Construtor: Erden Lehmbau GmbH / Lehm Ton Erde Baukunst GmbH
Créditos das fotografias: Bruno Klomfar

29 novembro 2023

Article_After Morocco Quake, Earthen Buildings Come Under Scrutiny_Bloomberg

After Morocco Quake, Earthen Buildings Come Under Scrutiny

By María Paula Mijares Torres
'Recent disasters have raised questions about the seismic vulnerability of mud-brick and rammed earth construction. Can this traditional building style be made safer?

Mud-walled buildings lie in ruins in Ouirgane, Morocco, on Sept 11. Photographer: Nathan Laine/Bloomberg

The 6.8 magnitude earthquake that struck Morocco on Sept. 8 — the strongest in the country in 120 years — was centered in the High Atlas Mountains, one of the nation’s poorest regions. In remote villages, thousands of homes and buildings collapsed during the quake and its aftermath, with devastating results: More than 2,900 deaths have been confirmed, and 300,000 people have been made homeless.
Many of these buildings were made of unfired mud bricks and rammed earth, a traditional building technique that’s been used for millennia. Newer buildings crumbled alongside historic ones, some of which have stood for several hundreds of years. Among the structures that appear to have been damaged are the Kutubiyya Mosque and parts of the Jewish quarter in the Old City of Marrakech, as well as the Tinmel Mosque and the Aït Benhaddou fortified city — centuries-old complexes that are partially or entirely made with earthen materials.
This building style is common across Africa, as well as parts of Europe, Asia and the Americas: One in 10 of Unesco’s World Heritage sites employ the technique. But earthen buildings have a reputation for seismic vulnerability. In the 2003 quake that struck Bam, Iran — home of the 2,000-year old mud-brick Bam Citadel, as well as many other ancient buildings — up to 90% of the city’s urban fabric was destroyed or severely damaged.
The heavily damaged minaret of a mosque in Moulay Brahim, Morocco.Photo By Fernando Sanchez/Europa Press via Getty Images
But experts in the history of earthen buildings, like Huma Gupta, the Aga Khan professor in Islamic architecture at the Massachusetts Institute of Technology, say that in many ways this time-tested technique has been unfairly maligned. “I have been seeing a lot of reportage whenever there is an earthquake that affects a city or a town with a majority of earth architecture,” Gupta said. “There’s a sort of attribution of structural collapse to the material, but I want to make the distinction that it has very much to do with the fact that these earthen buildings have not been retrofitted for earthquakes.”
Indeed, modern concrete construction without proper seismic reinforcement can also fail during quakes, as seen in recent disasters in Turkey and Syria. And the sustainability benefits of earthen construction are considerable. “I just want to make sure that we don’t demonize earth architecture as being inherently bad in the face of natural disasters like earthquakes,” Gupta said.
Experts have pointed to other factors in widespread building failures, including inadequate maintenance and modern repairs made with incompatible materials and techniques. Mehrdad Sasani, professor of structural engineering at Northeastern University and expert in building collapse and building resilience, points to the general poverty of the High Atlas region. “The most important reason for that area being so drastically affected by the earthquake is the lack of socioeconomic resources,” he said. “If you don’t have those resources, you think first about what to eat, having a roof over your head and how to provide. There is no time to think about whether my building is earthquake resistant.”
Crumbled buildings line a road in Tinmel, Morocco.Photographer: Matias Chiofalo/Getty ImagesEurope

Many buildings in this region are the product of informal construction, built without codes or standards and erratically maintained or inspected, Sasani said. Non-reinforced dwellings are also known for being particularly deadly after a collapse, because they crumble into a dense pile of rubble without leaving air pockets, as concrete-and-steel structures typically do. “When this kind of building breaks, it becomes practically soil,” said Sasani. “It would be hard to survive in a building like that — it’s like a ton of soil had fallen on top of you and it pretty much uses up all the spaces to breathe.”
Seismic reinforcement can dramatically improve the performance of existing earthen buildings. At the Getty Conservation Institute, the Earthen Architecture Initiative has studied how to retrofit historic churches and other earthen buildings in Peru, working with the Peruvian Ministry of Culture and two local universities. “The methods that we’re testing range everything from walls that are covered with a geomesh, to timber reinforcements, to certain roof structures, all different kinds of methods to improve the performance of earth buildings,” said Benjamin Marcus, project specialist at the buildings and sites department at the Getty Conservation Institute.

Built of rammed earth and mud bricks, the Kasbah of Taourirt is among the best-preserved examples of Berber architecture. Photo: Scott S. Warren/Getty Conservation Institute

A key goal of seismic reinforcement is to strengthen the walls of a building to create a stable “box structure,” so that walls don’t separate from each other, leading to floor and roof collapse. That’s what brings down many unreinforced buildings — regardless of the material they’re built in.
Marcus and his team are familiar with Moroccan building styles: The Getty group recently undertook a conservation and rehabilitation plan for the Kasbah of Taourirt in the city of Ouarzazate.
Earthen buildings can also be engineered to be seismically resilient during the construction phase. At the University of California at Berkeley, architecture professor Ronald Rael has been experimenting with ways to use 3D printing to create earthen buildings embedded with fibers that make the structure more stable.
“It’s really a lot like reinforcement steel and concrete,” Rael said. “You see those metal cages that are inside the concrete, so imagine a fabric cage inside of earth.”
Like Gupta, Rael cautions against villainizing earthen architecture, an environmentally friendly technique that has been the focus of much interest in the green building industry. He cites the work of Burkina Faso architect Diébédo Francis Kéré, which relies heavily on the idea of using local materials like unfired clay rather than more energy-intensive steel and concrete. “If one of the most recent winners of what is basically the Nobel Prize of Architecture, the Pritzker Architecture Prize, can make buildings out of mud, why are we still seeing it as a bad thing?” he said. '

https://www.bloomberg.com/news/articles/2023-09-19/morocco-quake-takes-toll-on-earthen-homes-and-mud-brick-buildings?fbclid=IwAR0YHyE7y7xcY60SADVxVfaIJUsodt5DJKc_nBmQpKUKkNyL3MHMjaFsU4g

27 novembro 2023

Publicação_Taipa na arquitectura tradicional_Mariana Correia

Taipa na arquitectura tradicional_Mariana Correia

Artigo em http://www.restapia.es/files/14812

Exemplo de taipa com pedra no topo das juntas verticais na Casa do gado do Monte Pelicão em Saraiva, concelho de Ourique

24 novembro 2023

'The Mecca of re-use and circularity': Brussels startup turns waste earth into buildings_Léém_BC Materials_Belgium

'The Mecca of re-use and circularity': Brussels startup turns waste earth into buildings

Monday, 25 September 2023
By Lauren Walker at Brussels Times here
Photo Credit: BC materials

One Brussels-based startup is looking to tackle pollution caused by the construction sector one brick at a time. The innovative method transforms excavated soil into circular building materials to lower its price.
On the global scale, urbanisation contributes the equivalent of one surface of new buildings the size of Paris every day. From the construction to the operation of buildings (heating, cooling and lighting), emissions from these structures account for almost 40% of the total global output, highlighting the need to make the sector more sustainable.
The Belgian capital is becoming a global pioneer on this front with Brussels-based BC (short for Brussels Cooperation) Materials pioneering new techniques.

Upcycling waste
In Belgium, about 37 million tonnes of excavated earth goes unused each year. But a new project called Léém transforms this into building materials, greatly reducing waste and removing the need for a large amount of polluting and CO2-intensive building materials.
While a traditional brick or concrete block has a CO2 cost of 77-170 kg per square metre, a Léém brick emits just 3–10kg. It composed of 80% secondary raw materials; in traditional building materials this is just 0-10%. The bricks also help improve the air quality and the acoustics of buildings.
Photo Credit: BC materials

Despite the environmental savings, construction companies are often put off by the higher price and slower production of circular building materials. To overcome these challenges, BC materials collaborates with industrial players to cut prices for the compressed earth blocks by 39%.
"Léém collaborates with industrial partners to revalorise 'waste' – like excavated earth – into plasters, paints, blocks, etc. In this way, we can make circular materials as accessible as possible," BC Materials' CEO Ken De Coom told The Brussels Times.
The company has also stepped up production hugely, from 1,000 blocks per day to 80,000 blocks per day. It hopes this will see more projects adopt circular building materials.
De Coom added that Brussels' attitude towards sustainable architecture helped birth the idea. "We don’t think there’s another city – with its amazing architectural diversity and polyvalent spaces – where we could have started this whole project."
"It's no coincidence that architects all over the world visit us – from Copenhagen to Cambridge and from Canberra to L.A. – talking about Brussels as a 'Mecca of re-use and circularity'."

More information at https://bcmaterials.org/

20 novembro 2023

Text excerpt _The Potential of Earth_Upscaling Earth: Material, Process, Catalyst

The Potential of Earth

from Upscaling Earth: Material, Process, Catalyst,

Earth can serve as the basis for infinite conceptualizations and take on many colors and forms. From a historical perspective, earth is our oldest and single most important building material: it encapsulates qualities that anchor architecture in its very roots. 

As Kjetil Trædal Thorsen, founder of the Snøhetta Architectural Design practice, has noted: 

The essence of creation is captured in one material as old as the world itself and brand new as fast as it dries. It is as warm as the colour tones of the ground it comes from, as hard as rock to equally withstand the forces that made it, controlling humidity, temperature. Show me one other material that can do the same (4).”

Earth can be found almost anywhere in the world and translated into a contextually unique structure. Whether in the desert climates of North Africa, the tropical monsoon regions of Asia, or the frost-laden contexts of Central Europe; whether a peripheral single-family residence or highly urban, multi-story building: earth is both a viable and palpably sustainable material with which to design our world.

Archaeological excavations have revealed that earth has consistently been one of the most widely used building materials, traversing climates and continents, and that the building culture of earth has existed for more than nine thousand years (5). Its typologies include not just residential structures but the religious buildings, statues, and monuments, the ziggurats and fortifications that remain a part of the urbanized world today. The cities of Jericho, Chan-Chan in Peru, or Babylon in Iraq, the Alhambra in Spain, and even the original parts of the Great Wall of China were all constructed using various earth building techniques, from adobe brickmaking to ramming (6). 

Three thousand two hundred years ago, parts of the temple complex of Ramses II were constructed with earth bricks in Gourna, Egypt; the core of the sun pyramid in Teotihuacan, Mexico, was primarily constructed with rammed earth between the years 300 and 900 CE (7). Moreover, the earthen elements of these edifices did not contain any form of further structural reinforcement or stabilization beyond wooden ring beams or lintels of stone. These works demonstrate the ability of earth to withstand the tests of time and -particularly when well maintained - to survive weather events and even natural disasters such as earthquakes.

Currently, earth is the only material that completely aligns with fully sustainable building principles, such as the cradle-to-cradle concept (8). Like no other building material, earth is not only suited to its local climate but also has the capacity to generate an equally localized building culture, one in which investments in construction are grounded in social capital. 

It is this key aspect that gives earthen architecture the potential to break the cycles of financialization that extract profits from localities to enrich global conglomerates and corporations, and that so often dictate the course of development around the globe. Instead, the ever-varying characteristics of earth promote a broad range of socially sustainable and economically viable solutions.

More than this, earth also provides a rich aesthetic palette that mirrors and expresses cultural diversity. Anyone who has stood inside a house made of earth is familiar with the strong sense of place the material generates. 

Earth is healthy, not just in regard to sustainable construction, but also in the sense of physical and psychological well-being. It creates an emotional, familiar atmosphere and an unparalleled interior climate. While earth itself is not technologically advanced, it is capable of highly technical feats; for example, its ability to absorb water vapor like no other human-made material. Elevated and edified or not, earth contains great potential to meet contemporary needs. As described by Iranian-American architect Mohsen Mostafavi: “The limitations of a material’s use, or misuse, depend solely on our capacity to imagine alternative and unexpected means of incorporating it into the design process.” (9)

Architecture, as a design practice, began to eschew building with earth hundreds of years ago. The evolving specialization of the design world and fascination with more technologically advanced methods has relegated earth to a primitive, basic material. Only recently has this perception begun to change, and the potentials of one of our most ancient building materials explored anew. The challenge, therefore, as formulated by Mostafavi, is: 

How can we use dirt from the surface of the earth to make an alternative architecture that is both technically and aesthetically responsive to the conditions of our times?” (10)

(4) Kjetil Trædal Thorsen, as location in Venice in “Mud WORKS!” poster for the 15th International Architecture Exhibition, Biennale architettura 2016: Reporting from the Front, May 28 to November 27, 2016.

(5)  See Gernot Minke, Building with Earth: Design and Technology of a Sustainable Architecture (Basel: Birkhäuser, 2012, 3rd ed.), p. 11.

(6)  See David Easton, The Rammed Earth House (White River Junction: Chelsea Green Publishing, 2007), p. 4.

(7)  Ibid. pp. 3–9.

(8)  See William McDonough and Michael Braungart, Cradle to Cradle: Remaking the Way We Make Things (New York: North Point Press, 2002).

(9)  Mohsen Mostafavi, as cited in “Mud WORKS!” (see note 4).

(10)     Ibid.

Text excerpt from: Heringer, Anna, Howe, Lindsay Blair, Rauch, Martin, Upscaling Earth: Material, Process, Catalyst, GTA publishers, February, 2020

17 novembro 2023

Quote_Citação_Alexandre Bastos

“Nunca antes os arquitetos que trabalham com terra pensaram tanto na construção e na sua destruição. A tradição diz-nos que as casas nascem, vivem e depois morrem. Esta utopia da construção permanente, a escolha entre o ser efémero e o ser eterno, altera o conceito de construção e, sobretudo, o de arquitectura. 
Traz no entanto consigo outras utopias: a  liberdade plena e a grande flexibilidade que a taipa nos oferece, e que pode ser modificada para as próximas gerações, tornando o efêmero um material eterno e reaproveitando o mesmo material a custo zero, dando-lhe uma nova vida.”  
Alexandre Bastos, Mestre e Arquiteto português, Odemira

“Never before had architects who work with earth thought so much about construction and its destruction. Tradition had it that houses were born, lived and then died. This utopia of the permanent construction, the choice between being ephemeral and being eternal, alters the concept of construction and, above all, that of architecture. It brings with it others utopias: the full freedom and great flexibility that rammed earth offers, which can be modified for the coming generations, making the ephemeral with an eternal material and reusing the same material at zero cost, giving it new life.”
Alexandre Bastos, Portuguese Master-Architect, Odemira
at Earthen Architecture: Past, Present and Future – Mileto, Vegas, García Soriano & Cristini (Eds) © 2015 Taylor & Francis Group, London, ISBN 978-1-138-02711-4
Contemporary rammed earth construction. Alexandre Bastos—creativity and maturity
Francisco Jorge, ARGUMENTUM Edições, Lisbon, Portugal pp. 205-208

06 novembro 2023

Adega para Armazenamento de Licores_Archiac (Charente-Maritime)_França


© Atelier Rural - Adega de armazenamento, Archiac
'EM CHARENTE-MARITIME, UMA ADEGA DE ARMAZENAMENTO EM  TAIPA (PISÉ) _ATELIER RURAL 
L. P. 
12/11/2021 
Na propriedade Fontanière de Archiac (Charente-Maritime), especializada no cultivo da vinha, a nova adega projectada pelo Atelier Rural é dedicada ao armazenamento de aguardente e conhaques e confere um lugar de destaque à terra crua. 
Foi neste contexto rural, perto de um pequeno lago, sobre um solo argiloso de fraca qualidade e considerado impróprio para utilização em paredes, que os arquitectos do Atelier Rural imaginaram uma construção em terra com quase 500 m2. 
Para isso, optaram por um sistema construtivo padrão, com pilares e vigas de betão corrente, preenchimento de paredes interiroes com blocos de cimento e exteriores com blocos de 40 cm de terra apiloada, sob uma cobertura de telha de inclinação única. 

Terra batida pioneira 
A taipa foi realizada in situ, com terra vermelha de uma pedreira perto de Albi. Depois de misturada com areia cinzenta e brita, a formulação optimizada foi adaptada no local com a adição de argilas cinzentas de Biganos, a cerca de 200 km do projecto. 
Este foi um desafio para um empreiteiro que nunca tinha construído com terra. 
A taipa foi um dos três cenários propostos ao proprietário desta Quinta de conhaques, em conjunto com pedra e madeira, numa região sem oferta especializada no setor de empreitadas de terra e para um programa também ele pioneiro na área. 
Isto porque a terra, como material primário e com a sua capacidade de controlo natural de temperatura e humidade, estava até hoje nesta zona, reservada às caves onde se guardava o vinho.

En Charente-Maritime, un chai de stockage enveloppé de pisé par Atelier Rural

FICHA TÉCNICA
Local da Obra: Archiac (Charente-Maritime)
Dono de Obra: GFA de Fontanière
Projectistas: Atelier Rural Architectures, architecte mandataire ; Martin Pointet, BET terre ; ISB, BET structure ; Archivolte, pisé ; Lalande, VRD ; Gillebert, couverture ; Durozier, bois ; Chevalier, acier ; Sardain, électricité ; Aerelec, plomberie ; Savariau, paysage ; Oxo Line, équipement
Programme : chai de stockage d’eau-de-vie
Área Total: 425 m2
Orçamento: 852 278 € HT

Este texto é resultado de tradução livre a partir do artigo da revista  N°292 de Dezembro de 2020

02 novembro 2023

Premio de Arquitectura Terra Ibérica_2023

Premio de Arquitectura Terra Ibérica 2023
Categoría Vivienda
-Raw Rooms en Ibiza Peris+Toral Arquitectes
Fotografía: José Hevia.
43 viviendas proyectadas por Peris + Toral Arquitectes para el IBAVI, Instituto Balear de la Vivienda, en una zona de nuevo crecimiento urbano al sur de la ciudad de Ibiza. Su propuesta plantea un sistema energético con una baja huella de carbono empleando muros de carga con bloques de tierra compactada (BTC) de 20 centímetros de espesor.

Fotografía: José Hevia.
El jurado ha valorado la complejidad técnica de su diseño y el «resultado excepcional de integración en el entorno y aprovechamiento de recursos de la arquitectura vernácula».
En esta categoría se ha entregado un segundo premio aequo a dos obras:

-Proyecto Entre Tierra (Cal Jordi & Anna) en Poal , Lleida, de Hiha Studio.

-Rehabilitación de dos casas entre medianeras en Terrassa , Barcelona, de arqbag coop.
Y, finalmente, se ha otorgado un accésit a la Casa de tierra en Boadilla de Rioseco (Palencia) por Lara Fuster Prieto de Heredera Estudi.

Categoría Edificio de otros usos. Premio ex aequo
-Intervención en la torre de Castilfalé (León), de Ramón Cañas Aparicio
El trabajo del arquitecto Ramón Cañas Aparicio ha consistido en la consolidación, restauración, protección y acceso al cuerpo superior desarrolladas en el entorno de la torre.
-Aula de Natura de Franqueses del Vallés, Barcelona, de Edra Arquitectura Km0 y Bunyesc Arquitectes
Edra Arquitectura Km0 y Bunyesc Arquitectes han respondido al encargo de proponer un aula de interpretación de la naturaleza en un entorno de alto valor ecológico rompiendo el volumen en tres contenedores construidos con materiales naturales y locales: madera prefabricada y tierra procedente de los desprendimientos del meandro del río Congost.
Ambas propuestas comparten una misma filosofía en común, ha destacado el jurado, «la búsqueda de la contemporaneidad» en un diálogo con el paisaje que «respeta lo ya existente».
En esta categoría se ha entregado un accésit a la obra:

-Centro Comunitario de Manica, Mozambique, de CAS Studio
CAS Studio ha diseñado un espacio comunitario y una escuela de formación social y cívica que el jurado ha valorado por su «puesta en valor de la labor social de la arquitectura».

Categoría Innovación y divulgación

- Manual 'Criterios de intervención en la arquitectura de tierra', de Camilla Mileto y Fernando Vegas López‐Manzanares

Un informe enmarcado en el Proyecto Coremans, impulsado por el Instituto de Patrimonio Cultural de España (IPCE) del Ministerio de Educación, Cultura y Deporte con el objetivo de crear líneas guía de referencia para las intervenciones de restauración que se lleven a cabo en el patrimonio construido, cuyo contenido está disponible en: Criterios de intervención en la arquitectura de tierra.

Artigo_Técnicas para melhorar a durabilidade da construção em terra_Rute Eires_Aires Camões_Maria Ponte

Técnicas para melhorar a durabilidade da construção em terra 

Rute Eires1 & Aires Camões1

C-TAC, Universidade do Minho, Departamento de Engenharia Civil Azurém, P - 4800-058 Guimarães, Portugal 

Maria Ponte2

Universidade de Coimbra, Departamento de Arquitectura, Faculdade de Ciências e Tecnologia, Coimbra Portugal

'(...)

5 - ESTABILIZAÇÃO DO MATERIAL TERRA PARA AUMENTAR A DURABILIDADE 

Entre os estabilizantes mais utilizados na construção em terra desde a Antiguidade encontra-se a cal. 

Este material tem sido adicionado ao solo para construção de paredes em terra e para preparação de argamassas à base de terra, utilizando-se diferentes tipos de cal, sendo sobretudo utilizada cal aérea hidratada, Ca(OH)2, ou cal viva, CaO (Eires, 2012). 

O principal propósito desta adição é incrementar as resistências mecânicas e a resistência à ação da água. Este aumento pode ser explicado através da reação de carbonatação que ocorre na cal na presença de CO2, mas também pela reação pozolânica entre partículas de argila presentes no solo e cal (Santos, 2010 in Eires, 2012). 

A incorporação de biopolímeros na construção em terra, também tem sido utilizada a fim de melhorar o seu comportamento face à ação da água. Existem inúmeros exemplos de biopolímeros que têm sido usados como complemento estabilizante do solo. 

Alguns são de origem vegetal, tais como farinhas, amidos, gomas, cato, óleos, ceras ou resinas de plantas, outros de origem animal, como gorduras animais, soro de leite, caseína, claras de ovos, sangue, excrementos e urina (Eires et al, 2010). No presente texto os biopolímeros são considerados como polímeros de origem natural e biológica, sem qualquer tipo de síntese laboratorial. Entre estes biopolímeros, os óleos ou gorduras, têm sido os mais utilizados para tornar os edifícios em terra mais impermeáveis. Estes materiais são sobretudo incorporados na hidratação da cal, mediante dois métodos distintos na sua preparação. Pode ser por simples hidratação, juntando-se óleos ou gorduras com a cal e a quantidade adequada de água para a hidratação, adicionando-se posteriormente essa mistura no solo a ser estabilizado, ou pode ser utilizado um processo chamado "hidratação a quente", misturando simultaneamente o solo ou areia argilosa com óleos e gorduras com a água necessária (Eires, 2012). 

Em termos históricos, a hidratação de cal com óleos já foi citada por Vitrúvio, que mencionou sobre tubos de barro para a água o seguinte: "as juntas terão de ser revestidas com uma mistura de cal viva e óleo", Vitruvius (século I a.C.). No século XVI, o refugo de óleo de baleia, que era utilizado na iluminação da época, era utilizado como aditivo hidrófugo. Este óleo com cal formava um material chamado "gala-gala", comumente usado nos Açores e Brasil (Veiga, 2008 in Eires, 2012). Em Portugal, a cal viva hidratada a quente com óleos ou gorduras também era usada para estabilizar as paredes de terra ou argamassas. Foi mencionado também este tipo de uso em edifícios tradicionais construídos em terra e madeira em Lisboa (CML, 2005 in Eires, 2012). 

Relativamente à conexão entre a cal e os biopolímeros é referido por Čechová que em ambientes básicos, por exemplo, em argamassas à base de terra e cal ou em solo estabilizado com cal, com a adição de óleos ou gorduras os triglicérois, presentes na sua constituição, quando hidratados, resultam em sais insolúveis de cálcio de ácidos gordos. Estes sais são hidrófugos e conectam-se bem com o cálcio da cal e proporcionando maior repelência à água (Čechová, 2009). 

Na Universidade do Minho, foi desenvolvido um trabalho de pesquisa sobre o estudo da estabilização de solo com cal e biopolímeros, adaptando o conhecimento antigo para melhorar a durabilidade relacionada com a ação da água. O principal objetivo do estudo era conseguir uma estabilização do solo adequada para a construção com terra compactada (taipa ou blocos de terra compactados, BTC) sem revestimento adicional, obtendo boa durabilidade contra a ação da água sem comprometer o potencial estético do material da terra. Desta forma, desenvolveu-se um estudo geral relacionado com a incorporação de biopolímeros (amido de milho, farinha de trigo, açúcar, óleo de linhaça, glicerol, caseína, óleo de cozinha usado e compostos de água de pasta de celulose e de palha) e aditivos minerais (hidróxido de sódio, silicato de sódio, alúmen, cloreto de cálcio, cloreto de sódio e borato de sódio). 

A percentagem adicionada de biopolímeros fixou-se em 0,4% e 1,0% da massa de solo e a percentagem de aditivos minerais foi 0,1%. 

Os principais resultados obtidos, relativamente à absorção de água por capilaridade e resistência à compressão no estado saturado, mostraram que, entre os biopolímeros testados, os óleos proporcionavam um melhor comportamento e entre os aditivos minerais testados o hidróxido de sódio apresentava melhores resultados, (Eires, 2012). 

Foi também testada a estabilização de solo com: cal viva (CV), cal hidratada (CH) e cimento (C) (4% da massa de solo por cada estabilizante), óleo de cozinha usado (O) (1,0% da massa de solo), e a adição simultânea de hidróxido de sódio (CV_NaOH e CV_O_NaOH) (0,1% da massa de solo), cujos principais resultados se encontram na Figura 7, Eires (2012). 







Estes resultados mostram que o solo estabilizado com cal viva mostrou um melhor desempenho, acima de tudo, com a adição de óleo de cozinha usado e hidróxido de sódio.

Comparando o solo de referência, não estabilizado (REF), com as composições de solo com cal viva (CV) os resultados dos ensaios de resistência à compressão revelam: um aumento de 102% sobre a resistência devido à estabilização com cal viva; um aumento de 131% com adição complementar de óleo (CV_O); e um aumento de 150% com adição simultânea de óleo e de hidróxido de sódio (CV_O_NaOH). 

As composições com cal viva e óleo também mostraram um bom desempenho na absorção de água por capilaridade (diminuição de água absorvida em cerca de 95%). Em testes de erosão acelerada, usando um jato em spray para simular a ação de chuva, estas composições de cal viva com óleo também apresentaram bons resultados, com uma erosão reduzida, apresentando uma redução da erosão face ao solo de referência de 99,5% (Eires, 2012).

(...)'