Páginas

terça-feira, 27 de outubro de 2020

Alnatura Campus_Germany

Rammed Earth construction

Alnatura Campus 2015-2019_Darmstadt, Germany 



sexta-feira, 25 de setembro de 2020

10 Exemplos de Construção com Terra na Bretagne_França


Armazém em bauge / cob no centro histórico de St Sulpice la Forêt


Casa de artesão em bauge/ cob em Gevezé


Detalhe de janela_Casa em bauge / cob em Gevezé


Restauro de construção em terra em Mont Dol


Detalhe de janela em construção restaurada em bauge / cob


Detalhe de textura de bauge / cob contemporâneo em Rennes


Detalhe de textura de taipa / pisé




Construção vernacular / agrícola en bauge / cob em Melesse


Ampliação de habitação em bauge / cob em Dingé


Bauge contemporâneo / cob em Rennes


Loteamento HLM em taipa em Romillé


Quinta em bauge / cob em Saint Grégoire


Quinta restaurada em Romillé

Casa de Artesão em Gevezé

Ver o artigo original aqui
Todos os direitos autoriais ©Amélie Le Paih www.atelier-alp.bzh

quinta-feira, 24 de setembro de 2020

Exemplos de Construção em terra na Escandinávia

Exemplos de Construção em terra na Escandinávia

Tinhamos preparado há já algum tempo um post para o blog com informação sobre exemplos de construção em terra na região da Escandinávia (onde chove, faz frio e neva com regularidade), que apontamos em seguida, falando por paises:

_Na Suécia:

Em termos de Investigação há como prinicipal referência o Byggnadsvård Nääs – Nääs Building Conservation Centre

Projectistas e construtores:
- A Arq. Eva-Rut Lindberg do Royal Institute of Technology da Suécia
- O Arq. Lars Palmgren
- A Arq.Jenny Andersson
- O Arq. Restaurador Lars-Ingvar Larsson;
- Os construtores Hans Bulthuis; o Johannes Riesterer da Svenska Jordhus (Swedish Clay Builder), e Ulf Henningsson.

Existem diversos sítios históricos com construção em terra na Suécia:
Um edifício de apoio turístico no castelo Hjuleberg, em Halland, construído em 1921 é em taipa, bem como a Villa Terra’, construída em Jordhuset e a Gisselson house ambas construídas em 1920.
Existem também diversas "cottages" em taipa em Norland e em Kvicksund; um edifício em taipa em Sallerup e outro em Falkenberg, e também em taipa os Correios de Upland, em Malmo conhece-se um edifício municipal e uma quinta rural pedagógica num dos parques urbanos da cidade; e ainda:
-Uma escultura pública em Lund pelo construtor Hans Bulthuis;
-Um Earthship (eco-village) construído em Skattungbyn por Jonas Erlandsson;
-Uma capela Baptista em Oppmanna(sjö), Arkelstorp, Skåne;
-Uma Igreja cristã em Järna pelo Arq. Walter Drumt.


_Na Finlândia:
Instituições:
- Investigação: Education and research: Helsinki University of Technology (HUT), Research Unit for Nature-based Construction (LRT);
- Investigação: Department of Monuments and Sites, National Board of Antiquities;
- Associação: Rural Development Association Ravakka
- Empresa: The Natural Building Company

Projectistas e construtores:
- Ann-Marie Braxén-Frommer, Clay association
- Jenni Reuter, Arquitecta
- Kasper Järnefelt, Arquitecto
- Kirsti Kovanen, ICOMOS
- Markku Matila Arquitecto
- Seija Linnamäki, Conservadora
- Teuvo Ranki, Arquitecto
- Tiili Oy Seppälän, Produtor

Sítios históricos e modernos em terra crua
- Raisio, construído em 1997, o primeiro edifício em terra numa feira finlandesa (loadbearing construction with infill of clay-straw bricks, inside clayplastered, outside limeplaster).
- Um estábulo em Mynämäki, Korvensuu, condtruído in 1915
- Um edifício de habitação com tecnologias de terra crua em Harviala e outro em Pori;
- Um estábulo e edifício de apoio rural em terra, em Janakkala;
- Um Hostel em Strömfors, Krouvinmäen majatalo;
- Um edifício em taipa em Humppila e outro em Kotka.


_Na Dinamarca:
Instituições:
- OKO-NET – Network for Ecological Education and Practice (Info: eco-net@eco-net.dk
- DIB – Danish International Settlement Services (architects and engineers) Info: dib@dib.dk
- Associação: LOB – Landsforeningen for Okologiskt Byggeri - National Association for Ecological Construction info: lob@lob.dk
- Associação: Landsforeningen for Bygnings- og Landskabskultur - The Danish National
- Association for Built Heritage and Landscape Info: mail@byogland.dk
- Associação : AIH - Co-operative Community of Hjortshøj

Projectistas e construtores:
- Builder Bjarne Grube Wickstrøm - Øko-Byg - Ecobuilding (Cob)
- EgenVinding & Datter - Ecobuilding construction company
- Arquitecto Flemming Abrahamsson – Fornyet Energi Design
- Arquitecto Forn Yet Flemmio
- Arquitecto Hans H. Christensen
- Arquitecto Claus Jørgensen
- Designer Jo Morandi – Small Planet / Living Houses Company Rønde
- Designer Karen Abrahamsson – Fornyet Energi Design
- Construtor Lars Keller – Small Planet / Living Houses Company - Rønde
- Produtor Per Sorensen – Unfired Clay Brickworks
- Construtor Pierre Laceulle, earth builder
- Arquitecto Sirous Khosrai
- Arquitecto Soren Sondergaard, Kopenhagen (Sjaelland island)
- Construtor Steen Moller - Friland Community Founder – Rønde
- Arquitecto Steen Ostergaad
- Produtor Willem Oskam - Oskam C.E.B.M.

Sítios históricos e modernos em terra crua
- Uma ‘cottage’ em taipa em Odense. Financiada pelo Estado como um edifício demonstrativo de tecnologias sustentáveis.
- A Torup Ecological Village – próximo de Hundested (50 km NW de Copenhaga).
- A Dyssekilde Ecovillage – próximo de Hundested (50 km NW de Copenhagea). Flemming Abrahamsen (ecological architect) - cob houses - Dyssekilde ecovillage demonstrates many of his designs.
- A Hjortshoj Eco-village, próximo de Arhus



Igreja Cristã em Järna


Museu Dejbjerg Jernalder em Skjern

Edifício em Steninge

segunda-feira, 6 de julho de 2020

Exemplos_Guesthouse Xiangshan Campus Hangzhou_Amateur Architecture Studio













Guesthouse Xiangshan Campus Hangzhou by Amateur Architecture Studio

(photo: Iwan Baan from here)





Exemplos_ALNATURA Headquarters_Darmstadt - Germany


Prefabricated rammed earth blocks with integrated heating/cooling pipes assembled
on site at the new ALNATURA Headquarters in Darmstadt, Germany (construction by Martin
Rauch – Lehm Ton Erde Baukunst GmbH). 
Photo from S Jörchel 2019 IOP Conf. Ser.: Earth Environ. Sci. 290 012018


sexta-feira, 3 de julho de 2020

Regulamentação internacional sobre Construção em terra

Principais Normas e Recomendações internacionais para a Construção em Terra, incluindo aspetos construtivos de estabilidade estrutural, de sismicidade, de Térmica e de caracterização e durabilidade do material: 

- Austrália Australian Earth Building Handbook 2002 (HB 195) Link 

- New Zealand Earthen Building Standard : Link
NZS: Engineering design of earth buildings. NZS 4297:1998. Wellington: Standards New Zealand,
1998.
NZS: Materials and workmanship for earth buildings. NZS 4298:1998. Wellington: Standards New
Zealand, 1998.
NZS: Earth buildings not requiring specific design. NZS 4299:1999. Wellington: Standards New
Zealand, 1999.

- Zimbabwe SAZ: Standard Code of Practice for Rammed Earth Structures. SAZS 724:2001. Standards Association of Zimbawbe, Harare, 2001.

- Quénia Norma KS 02-1070 KEBS: Specifications for stabilized soil blocks. KS02-1070:1993 (1999) Nairobi: Kenya Bureau of Standards, 1999.

- Nigéria norma SON: Standard for stabilized earth bricks. NIS 369:1997. Lagos: Standards Organisation of Nigeria, 1997.

- Para a região de África, em 1998 foram emitidas 14 normas sobre BTC pela Organização Regional de Normativas Africana (ARSO), publicadas numa série tecnológica do CDI/CRATerre.
ARSO: Compressed earth blocks, Standard for terminology. African Regional Standard 670: 1996
Nairobi, 1996.
ARSO: Compressed Earth Blocks, Definition, classification and designation of compressed earth
blocks. African Regional Standard 671: 1996 Nairobi, 1996.
ARSO: Compressed Earth Blocks, Definition, classification and designation of earth mortars. African
Regional Standard 672: 1996 Nairobi, 1996.
ARSO: Compressed Earth Blocks. Definition, classification and designation of compressed earth
blocks masonry. African Regional Standard 673:1996 Nairobi, 1996.
ARSO: Compressed Earth Blocks. Technical specifications for ordinary compressed earth blocks.
African Regional Standard 674: 1996Nairobi, 1996.
ARSO: Compressed Earth Blocks-Technical specifications for facing compressed earth blocks. African
Regional Standard 675: 1996 Nairobi, 1996.
ARSO: Compressed Earth Blocks-Technical specifications for ordinary earth mortars.African Regional
Standard 676: 1996 Nairobi, 1996.
ARSO: Compressed Earth Blocks-Technical specifications for facing earth mortars. ARS 677: 1996
Nairobi, 1996.
ARSO: Compressed Earth Blocks-Technical specifications for ordinary compressed earth block masonry.
ARS 678: 1996 Compressed Earth Blocks-Technical specifications for ordinary compressed
earth block masonry. Nairobi, 1996.
ARSO: Compressed Earth Blocks-Technical specifications for facing compressed earth block masonry.
ARS 679: 1996 Nairobi, 1996.
ARSO: Compressed Earth Blocks. Code of practice for the production of compressed earth blocks.
ARS 680: 1996 Nairobi, 1996.
ARSO: Compressed Earth Blocks. Code of practice for the preparation of earth mortars. ARS
681: 1996 Nairobi, 1996.
ARSO: Compressed Earth Blocks. Code of practice for the assembly of compressed earth block
masonry. ARS 682: 1996 Nairobi, 1996.
ARSO: Compressed Earth Blocks. Standard for classification of material identification tests and mechanical tests. ARS 683: 1996 Nairobi, 1996.

Tunísia normas NT publicadas em 1996 pelo organismo normativo da Tunísia, INNORPI.
INNORPI: Blocs de terre comprimée ordinaires – Spécifications techniques. NT 21.33:1996. Tunisian
Standards, 1998.
INNORPI: Blocs de terre comprimée - Définition, classification et désignation. NT 21.35:1996. Tunisian Standards, 1998.

Turquia
TSE: Cement Treated Adobe Bricks. TS 537. Turkish Standard Institution, Ankara, 1985.
TSE: Adobe Blocks and Production Methods. TS 2514. Turkish Standard Institution, Ankara, 1997.
TSE: Adobe Buildings and Construction Methods. TS 2515. Turkish Standard Institution, Ankara, 1985.

- Índia Indian Earthen Building Standards Link 
O BIS (Bureau of Indian Standards) publicou as normas
BIS: Code of practice for in-situ construction of walls, in building soil-cement. IS 2110 Bureau of
Indian Standards, 1980, revista em 2007,.
BIS: Specification for soil based blocks used in general building construction. IS 1725 Bureau of
Indian Standards, 1982.
BIS: Improving earthquake resistance of earthen buildings – Guidelines. IS 13827. Bureau of Indian
Standards, 1993.

- Sri Lanka 
SLSI: Specification for compressed stabilized earth blocks. Part 1: Requirements SLS 1382-1. Sri Lanka Standards Institution, 2009.
SLSI: Specification for compressed stabilized earth blocks. Part 2: Test Methods. SLS 1382-2. Sri
Lanka Standards Institution, 2009.
SLSI: Specification for compressed stabilized earth blocks. Part 3: Guidelines on production, design
and construction. SLS 1382-3. Sri Lanka Standards Institution, 2009.

Espanha Norma - UNE 41410:2008 AENOR: Bloques de tierra comprimida para muros y tabiques. Definiciones, especificaciones y métodos de ensayo. UNE 41410, Madrid, 2008.
Em finais de 2008 é desenvolvida a primera norma espanhola de construção em terra, e a primeira norma europeia 'não experimental' para blocos de terra comprimida, emitida pelo subcomité AEN/CTN 41 SC 10 “Edificación con tierra cruda” da AENOR.

- Alemanha German Earthen Building Standards Link, mais informação aqui
Lehmbau Regeln 1999.
E DIN 18942-1:2018-04 Earthen materials – Part 1: Vocabulary 
E DIN 18942-100:2018-04 Earthen materials – Part 100: Conformity assessment 
E DIN 18945:2018-04 Earth blocks – Terms and definitions, requirements, test methods 
E DIN 18946:2018-04 Earth masonry mortar – Requirements and test methods 
E DIN 18947:2018-04 Earth plasters – Requirements and test methods 
E DIN 18948:2018-04 Earthen boards – Requirements and test methods 

- França Norma experimental XP P13-901,2001 por AFNOR: Compressed earth blocks for walls and partitions: definitions - Specifications - Test methods - Delivery acceptance conditions. XP P13-901, Saint-Denis La Plaine Cedex, 2001. Link

- Itália 
_Legge 24 Diciembre 2003, n. 378: “Disposizioni per la tutela e la valorizzazione dell’architettura rurale”. Gazzetta Ufficiale, nº 13 (2004).
_Regione Piemonte L.R. 2/06: “Norme per la valorizzazione delle costruzioni in terra cruda”.
B.U.R. Piemonte, nº 3 (2006).

- Novo México, EUA 
_CID: New Mexico Earthen Buildings Materials Code. NMAC 14.7.4. 2003. Construction Industries
Division CID of the regulation and Licensing Departament, Santa Fe, 2004.
_ASTM International: Standard Guide for Design of Earthen Wall Building Systems. E2392 M-10.
Pennsylvania 19428-2959, United States, 2010.

- Peru Norma Técnica de Edificación - Codigo Peruano E-080 de 2000 Link, mais informação aqui
SENCICO: Adobe. NTE E 0.80. Reglamento Nacional de Construcciones, Lima, 2000.
Actualmente a norma peruana encontra-se ampliada com as normas NTP, emitidas pelo sistema Peruano de Normalización INDECOPI.
INDECOPI: Elementos de suelo sin cocer: adobe estabilizado con asfalto para muros: Requisitos.
NTP 331.201. nstituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad
Intelectual, Lima, 1978.
INDECOPI: Elementos de suelos sin cocer: adobe estabilizado con asfalto para muros: Métodos de
ensayo. NTP 331.202. Instituto Nacional de Defensa de la Competencia y de la Protección de la
Propiedad Intelectual, Lima, 1978.
INDECOPI: Elementos de suelos sin cocer: adobe estabilizado con asfalto para muros: Muestra y
recepción. NTP 331.203. Instituto Nacional de Defensa de la Competencia y de la Protección de la
Propiedad Intelectual, Lima, 1978.

- Colômbia Norma NTC 5324, emitida por ICONTEC: Bloques de suelo cemento para muros y divisiones. Definiciones. Especificaciones. Métodos de ensayo. Condiciones de entrega. NTC 5324. Instituto Colombiano de Normas Técnicas y Certificación, 2004.

- Brasil pela Associação Brasileira de Normas Técnicas (ABNT) 
ABNT: Tijolo maciço de solo-cimento. NBR 8491 EB1481. Associação Brasileira de Normas Técnicas,
Rio de Janeiro, 1984.
ABNT: Tijolo maciço de solo-cimento - Determinação da resistência à compressão e da absorção
d’água. NBR 8492 MB1960. Associação Brasileira de Normas Técnicas, Río de Janeiro, 1984.
ABNT: Fabricação de tijolo maciço de solo-cimento com a utilização de prensa manual. NBR10832
NB1221. Associação Brasileira de Normas Técnicas, Río de Janeiro, 1989.
ABNT: Fabricação de tijolo maciço e bloco vazado de solo-cimento com utilização de prensa hidráulica.
NBR 10833 NB1222. Associação Brasileira de Normas Técnicas, Río de Janeiro, 1989.
ABNT: Bloco vazado de solo-cimento sem função strutural. NBR 10834 EB1969. Río de Janeiro:
Associação Brasileira de Normas Técnicas. 1994.
ABNT: Bloco vazado de solo-cimento sem função estrutural - Forma e dimensões. NBR 10835
PB1391. Associação Brasileira de Normas Técnicas, Río de Janeiro, 1994.
ABNT: Bloco vazado de solo-cimento sem função estrutural - Determinação da resistência à compressão e da absorção de agua. NBR 10836 MB3072. Associação Brasileira de Normas Técnicas,
Río de Janeiro, 1994.
ABNT: Solo-cimento - Ensaio de compactação. NBR 12023 MB3359. Associação Brasileira de Normas Técnicas, Río de Janeiro, 1992.
ABNT: Solo-cimento - Moldagem e cura de corpos-de-prova cilíndricos. NBR 12024 MB3360. Associação Brasileira de Normas Técnicas, Río de Janeiro, 1992.
ABNT: Solo-cimento - Ensaio de compressão simples de corpos-de-prova cilíndricos. NBR 12025
MB3361. Associação Brasileira de Normas Técnicas, Río de Janeiro, 1990.
ABNT: Solo-cimento - Ensaio de durabilidade por molhagem e secagem. NBR 13554. Associação
Brasileira de Normas Técnicas, Río de Janeiro, 1996.
ABNT: Solo-cimento - Determinação da absorção d’água. NBR 13555. Associação Brasileira de
Normas Técnicas, Río de Janeiro, 1996.
ABNT: Materiais para emprego em parede monolítica de solo-cimento sem função estrutural. NBR
13553. Associação Brasileira de Normas Técnicas, Río de Janeiro, 1996.

quinta-feira, 2 de julho de 2020

Curva Granulométrica da Taipa_Guillaud e Houben



GUILLAUD, H.; HOUBEN, H. (1995) – Traité de construction en terre. Marseille: Parenthèses.





quinta-feira, 25 de junho de 2020

Cátedra UNESCO de Arquitectura de tierra, culturas constructivas y desarrollo sostenible_Junho 2020


La Cátedra UNESCO de Arquitectura de tierra, culturas constructivas y desarrollo sostenible (por Fernando Vegas y Camilla Mileto) continuara con las conferencias programadas a pesar de las circunstancias actuales. Durante la actual situación de emergencia sanitaria mundial, las conferencias seguirán siendo realizadas telemáticamente y publicadas en su canal de Youtube.

El título de la próxima conferencia es "La construcción de la arquitectura del vino en la comarca Utiel-Requena: el caso de Cuadete de las Fuentes" y correrá a cargo de Raquel Giménez Ibáñez. Ya está disponible en el canal de Youtube, puedes verla aquí.

Grupo de Investigación
Res-Arquitectura - Investigación, Restauración y Difusión del Patrimonio Arquitectónico
Universitat Politècnica de València
Camino de Vera s/n, 46022 - Valencia - Spain 
Building 8B, Access L, Floor 0
Ph: +34 963877971
Open Access Journal "Loggia - Arquitectura & Restauración"

segunda-feira, 23 de março de 2015

Terres Crues Australes_Film

Terres Crues Australes_
Deux Architectes français parcourent l'Australie, à la recherche de bâtiments en terre crue.
Two french architects travel in Australia, looking for earth buildings.

15º SIACOT_Equador_Novembro 2015

15º SIACOT
Seminario Iberoamericano de Arquitectura Y Construcción con Tierra.
9-13 Nov. 2015
Cuenca, Equador

Earth Building UK_June 2015

Earth Building UK event for June 2015.
The event is substantially enlarged from previous years and include a week long schedule of workshops, culminating in the EBUK conference. 
You can also find LOTS more information on the EBUK website:
Please find information on week-long festival of earth building to be held in Scotland in June. The events include practical workshops, a conference, building tours, as well as other events, all vested in a small community setting.
More information can be found at http://www.ebuk.uk.com/ebuk-2015-clayfest/
Of particular interest to you may be a symposium of turf building where we are keen to find a wide range of contributors on archaeology, ethnography, reconstruction, training and new build. We are inviting proposals for short presentations to the symposium, which should have an interesting and engaged audience.

Forward this information to anyone you know who may also be interested!

terça-feira, 30 de setembro de 2014

Shibam_Yemen

Shibam_Yemen

Deep in the middle of Yemen lays an iconic city  that pioneered the concept of skyscrapers.
Shibam, a city of about 7,000 people, was founded sometime around the 3rd century AD.
The town, in Hadramaut Governorate in the Wadi Hadramaut, Seiyun Distric, was built in its unique way to help protect residents from regional Bedouin attacks. Enormous clay walls were built around the city and residences were built upward rather than outward. Shibam is often referred to as “the oldest skyscraper city in the world,” and is one of the oldest examples of vertical urban planning.
When the city was constructed, the residents lacked the construction materials and techniques we have today. Instead they built with mud and clay, which gives the town the unique distinction as having the tallest mud buildings in the world – the tallest of which are over one hundred feet tall. To protect the buildings from rain and erosion, the exterior walls are thickly coated and must be anually maintained.
Most of the structures you see today in Shibam date from about the 16th century. Many have been rebuilt numerous times. There are about 500 structures in town called “tower houses,” apartment buildings that rise 5 to 11 stories tall.
The regional political instability combined with Shibam being in a somewhat remote location both conspire to keep it from becoming a more popular tourist destination.
"The old walled city of Shibam and Wadi Hadramaut constitute an outstanding example of human settlement and land use. The domestic architecture of Shibam is an outstanding characteristic example of houses in the Arab and Muslim world.
The city is built on a hillock, which has allowed it to escape the devastating floods of Wadi Hadramaut and to become the capital of the territory after the destruction of ancient pre-Islamic capital, Shabwa, in AD 300. Its plan is trapezoidal, almost rectangular; and it is enclosed by earthen walls within which a block of dwellings, also built from earth, have been laid out on an orthogonal grid. The highest house is eleven storeys high and the average is five.
The impressive structures for the most part date from the 16th century, following a devastating flood of which Shibam was the victim in 1532-33. However, some older houses and large buildings still remain from the first centuries of Islam, such as the Friday Mosque, built in 904, and the castle, built in 1220.
In Shibam there are some mosques, two ancient sultan's palaces, a double monumental door and 500 more buildings, separated or grouped, but all made uniform by the material of which they are constructed: unfired clay."
For more information please visit Unesco website here.








Workshops EMBARRO_2014

Workshops Embarro/Casa da Cor em São Brás de Alportel.
Dias 10 e 11 de Outubro - Aplicação de Tadelakt
Dias 17 e 18 de Outubro - Aplicação de Rebocos de Barro.

Para mais informação contactem a Embarro
Tel. +351 289.845.032 Tmvl. +351 918.888.222 mail info@embarro.com
ou visitem o website www.embarro.com



sexta-feira, 18 de julho de 2014

Herzog & de Meuron Shapes A Processing Plant with Rammed Earth_ArchitectMagazine

Herzog & de Meuron Shapes A Processing Plant with Rammed Earth
Rammed earth gets a design-savvy redux in Ricola's newest facility.
By Blaine Brownell

Although it may come as a surprise to architects practicing in Europe and North America, earthen construction is a prominent material in other parts of the world, with more than 30 percent of the global population using earth for building construction.
Despite this discrepancy—or perhaps because of it—Basel, Switzerland–based Herzog & de Meuron employed the material for its design of Ricola's herb center in Laufen, Switzerland. As the firm's seventh project for the Swiss herbal company, the Kräuterzentrum production facility consolidates the manufacturer’s processing operations, such as drying, cutting, mixing, and storing herbs, under one roof.
Rammed earth makes a good material choice, due to its low embodied energy and its intrinsic ability to regulate temperature and humidity effectively. The material specified for this project comes from local quarries and is a mixture of clay, soil, and marl (an unconsolidated soil composed of clay and lime). Ever the material experimenters, Herzog & de Meuron chose to prefabricate panels of rammed earth in a nearby factory and have them hoisted into place by crane, rather than construct the material in situ, as is typically done. The architects also chose to incorporate lime mortar and volcanic tuff into every eighth layer of the material as way to prevent erosion.
There is an obvious irony in the fact that one of the world’s most materially innovative design practices has selected one of the oldest and most common materials for its latest project. However, given the relative ignorance about rammed earth in many parts of the world today, the Kräuterzentrum serves as a welcome and inspiring example of a more environmentally sensitive architecture. 
Blaine Brownell, AIA, is a regularly featured columnist whose stories appear on this website each week. His views and conclusions are not necessarily those of ARCHITECT magazine nor of the American Institute of Architects.

Rammed-earth walls support Ricola's new herb center in Laufen, Switzerland.
Credit: Ricola
The clay, soil, and other fillers comprising the panels were sourced from quarries near the facility.
Credit: Ricola
The rammed-earth panels were fabricated off site.
Credit: Ricola
More than 30 percent of the global population uses earth as a construction material.
Credit: Ricola
Original post here

terça-feira, 10 de junho de 2014

Mud House Design 2014 Competition

Nka Foundation invites entries for Mud House Design 2014, an international architecture competition open to recent graduates and students of architecture, design and others from around the world who think earth architecture can be beautiful. The challenge is to design a single-family unit of about 30 x 40 feet on a plot of 60 x 60 feet to be built by maximum use of earth and local labor in the Ashanti Region of Ghana.
This is the design problem: In Ghana, as in other countries in West Africa, stereotypes about buildings made of earth persist because of poor construction. From the cities to the low-income villages, use of concrete - despite its dependence on imported resources - is considered indispensable for building. Yet an excellent, cheap and local alternative called laterite, red earth, is available everywhere in Ghana. The long-term goal is to enable the Ghanaian population and lots of other places, to overcome the stigma that mud architecture is architecture for the very poor.
Registration and submission of entries runs from March 15, 2014 until August 31, 2014. For additional information, see the competition


segunda-feira, 9 de junho de 2014

Additives to Clay_Aditivos orgânicos à terra argilosa para construção

ADDITIVES TO CLAY - ORGANIC ADDITIVES DERIVED FROM NATURAL SOURCES 
Introduction 
Earth has been used for thousands of years for building throughout the world spanning a diverse range of climates and cultures. 
Earth itself is a multi-component system usually consisting of stones, sand, silt, clay, water and, near the ground surface, organic humus. Structural stability of earth buildings is maintained by the structural integrity of the sand and stone framework, by the pore filling capacity of the silt and, most importantly, by the binding qualities of the clay, which are in turn influenced by the moisture content of the soil. 
Compared with some building materials earth can be considered to have some disadvantages – it has relatively low compressive strength, tensile strength and abrasion resistance. It may also lose a lot of its rigidity in the presence of water. Nevertheless it is very cheap, very widely available, environmentally friendly, strongly linked to local cultures and traditions and, with skilful construction, can contribute significantly to the aesthetic appeal and user comfort of buildings. 
Good and durable earth buildings can be built provided certain precautions are taken. These precautions will depend on local conditions and structural requirements, but can broadly be classified into four categories: 
Soil selection 
Different soils can have very different characteristics. The quality of a soil for building is strongly dependant on grain size distribution and on excluding humus. 
Soil preparation and construction methods 
Builders should be familiar with soil pulverising, proportioning, mixing, maturing and curing as well as masonry techniques. 
Building design 
The design should take account of the properties of the raw material by appropriate load distribution and structural dimensions, and by incorporating protective elements against damp, rain, impact and abrasion. Protection can be achieved by adding more durable but complimentary materials at places such as the wall base, roof overhang and the copings, and by using plasters and renders on the walls. 
Improving the material quality 
Different treatments or additives, collectively known as stabilisation, can modify the properties of soils to control their shrinkage and swelling characteristics and so improve the binding ability of the clay in the soil. 
These stabilisation methods are described below. 
Compaction 
Compaction increases the soil’s density and hence its strength and resistance to mechanical damage. It also reduces water absorption but, with the associated reduction in porosity, durability may be reduced. 
Compaction is done in a mould or form: 
• statically (i.e. in a single pressing), with cylindrical rollers, wheeled rollers or presses; 
• dynamically (i.e. repeated), with tampers or rammers, vibrating rammers or pick 
hammers; 
• surface, with a beater – mainly for floors or roofs, although sometimes used on rammed 
earth walls before they dry. 
Effectiveness of compaction depends on applied pressure or energy, soil type and water 
content. 
Vegetable additives 
Fibres 
Fibres are widely used when building with earth. Generally fibres can be most easily mixed in with the soil if it is in a plastic or liquid state; that is not too dry. The fibres act to increase the tensile strength, reduce density, accelerate drying and reduce cracking by dispersing stresses. 
Fibres vary in shape, size, strength, elasticity and their bond strength with earth, so possible improvements with different types of fibre will vary, as will the amount of a particular fibre required. Usual proportions range between 1 and 4% by weight, representing in bulk a volume which can be as high as the volume of soil. 
The most common fibres used include straw, for example from wheat, rice or barley. The chaffs or husks of these crops can also be used. Other suitable vegetable fibres include hay, hemp, millet, sisal, filao needles, and elephant grass. Cow dung and, less frequently, horse and camel dung have also been used as additives because they contain short fibres which make the soil workable for plastering and rendering. Synthetic fibres such as colophane, steel or glass wool have found very limited application. Best results are obtained with fibre reinforcement if the wet mix is prepared several days before use. 
One drawback of vegetable fibre is variable durability. Dry fibres will generally last a very long time but when wet they are liable to rot. Also some are attacked by insects, especially termites, but others are not and often local knowledge exists to identify the most resistant types. 
Vegetable Oils and Fats 
The best additives of this type are those which dry, thereby harden, quickly and are insoluble in water. Such additives include coconut, cotton and linseed oil as well as castor oil – which is very expensive. Kapok, palmitic oil and shea butter have also been tried, but with variable results, so local trials are recommended. Shea butter can repel termites, and an addition of around 3% is recommended, although it can also be painted or sprayed on surfaces. 
Tannins 
Tannins are constituents of many plants, fruit and seeds. Chemically they are polyphenols and produce the dry bitter taste found in some fruit, teas and alcoholic drinks. A common use is in the tanning of animal skins and hides; hence the name. 
When added to soils, tannins often act to disperse clay particles so that they coat sand grains in the soil more evenly and, also help to break up clay lumps during compaction as well as reducing permeability of the soil and improving water resistance. 
The amount of tannin required varies from a small percentage of the mixing water for the most active types to completely replacing the mixing water in the case of decoctions – solutions obtained by boiling the natural products. In some regions of West Africa a decoction of the bark of the “Néré” tree (parkia biglobosa) is used for surface protection and it can also be used to stabilise gravelly soils with good results. Other tannins are prepared from the bark of oak, chestnut and scorpioid acacia. 
Gum arabic 
This is a product obtained from the acacia tree. It acts primarily as a flocculant: that is it helps to form flocs of clay particles within the soil which help to increase dry compressive strength and slow down water absorption, hence reducing shrinkage. However, it is soluble in water and so offers little protection to long-term moisture exposure. It is best used inside a building, added at 5 to 10% proportions. 
Palmo copal 
Copal is a resin obtained from certain tropical trees. It is usually added at 3 to 8% concentration to sandy soils. One variety, manilla copal, has waterproofing qualities. 
Sap and latexes 
The latex of certain trees, such as euphorbia, hevea rubber and concentrated sisal juice, reduces permeability slightly and improves cohesion. Proportions between 3 and 15% are normally used and best results are achieved with neutral rather than acidic soils. The juice squeezed from banana leaves, which is subsequently precipitated by mixing with lime to clean it, is another material which has similar properties. 
Molasses 
Dehydrated sugar molasses contain aldehydes which can be converted into polymers at high temperatures with the aid of phenolic catalysts. The resinous material obtained is similar to asphalt and other resins in its effects. It improves the strength and reduces permeability.
Normally a proportion of about 5% is used. 
Animal additives 
Care must be taken with animal products. In particular it is important that the animal has not suffered from a contagious disease for humans, such as anthrax. 
Fibres 
Hair and fur from animals are used with plasters and renders to reduce shrinkage and improve adhesion and impact resistance. 
Excrements 
These can contain chemicals such as phosphoric acid and potassium minerals which have beneficial effects. In addition excrements contain fibres. Additions of up to a third are possible, or even half for a finishing mix. Cow, horse or camel dungs are normally used. 
Goat dung can be used to lighten the soil. It is normal practice to leave a soil and dung mix to ferment for several days before use. 
Urine 
Horse urine, added to a soil, reduces its shrinkage and makes it more resistant to erosion. It can replace the mixing water and is sometimes mixed in with straw before adding to soil. The strong smell disappears on drying. 
Casein 
Proteinic casein, in the form of whey – a product formed by the souring of milk, sometimes mixed with animal blood, can be used for stabilisation. Milk powder has also been used. One proprietary mix is known as Poulh’s soup and is a mixture of diluted casein and brick dust beaten to a paste. 
Animal glues 
These improve strength and water resistance. They are made by boiling the skins and bones of animals in water. 
Termite mounds 
Termite mound material can be mixed with soil for a stabilising effect. Termite mounds are cemented with a cellulosic binder produced by the insects. 
Oils and fats 
Fish oil and animal fats can serve as waterproofing agents with stearates being the active component. Proportions from 5% are used but the effect can be variable. 

The need for additives 
It should be noted that there is not always a need to add stabilisers. Soil properties will dictate need and there are many examples across the world of the effective use of unstabilised soil. Stabilisers also add significantly to cost. 
If a stabiliser is deemed necessary the choice of which one to use will depend on a number of factors including: 
• the part of the building on which the soil is used and its exposure to the elements 
• the property of the soil which needs improving; e.g. dry strength, wet strength, water erosion, abrasion resistance, surface protection, etc. 
• the level of improvement required 
• the quantity of stabiliser required 
• the cost and availability of the stabiliser 
• whether production of the stabiliser is carried out locally or whether it needs to be imported. 

The precise quantities of additives often need to be determined empirically by trial and error for each particular situation. 
The results of laboratory tests often cannot be transferred directly to field practice, although they do provide useful guidance and a starting point for field tests. In the field, relatively simple and inexpensive tests such as observation of block durability on soaking in water and the use of a simple press to assess the load a block can carry in flexure can provide information on stabiliser requirements. As preparation of soil mixes and their use for building is often carried out under less rigorous conditions in the field than for testing, a reasonable increase in stabiliser dosage to compensate for this is recommended.

The original articule Technical Brief from Pratical Action can be found here.

Publicación online_X CIATTI-2013

Publicación online libro con las ponencias del X CIATTI-2013
El GrupoTierra ha publicado en su sitio de la web el libro en formato digital del Congreso del año 2013: "La arquitectura construida en tierra, Patrimonio y Vivienda" - X CIATTI. Congreso de Arquitectura de Tierra en Cuenca de Campos 2013.

El enlace donde lo podéis consultar es el siguiente:
http://www5.uva.es/grupotierra/publicaciones2014.html

"La arquitectura construida en tierra, Patrimonio y Vivienda" - Congreso de Arquitectura de Tierra en Cuenca de Campos 2013
Coordinadores: José Luis Sáinz Guerra. Félix Jové Sandoval.
ISBN: 978-84-617-0473-6
D.L.: VA 470-2014
Impreso en España
Junio de 2014
Publicación online.
Se accede a cada artículo a través de los enlaces de esta web:

Índice:
1. ESTUDIO DE LA TRADICION
Arquitectura vernácula básica. El refugio en el municipio de Bocairent (Valencia) 
Alesandra Insa Calabuig, Pablo Rodríguez-Navarro.

The Rammed Earth Building In Nigeria 
David C. Okoronkwo, Dr Jamal K. Khatib, Dr Nwabueze Emekwuru, Prof Richard F. Hall.

La vivienda tradicional de adobe en los Altos de Chiapas, México: un patrimonio vivo 
Nancy Jaqueline Jiménez Zomá, Luis Fernando Guerrero.

Casas de adobe mexicanas, una visión contemporánea. 
Leonardo Meraz Quintana, Diego Rescalvo Grajales y Luis Fernando Medina Esquivel.

Re-habitar a terra. Reflexão sobre a questão habitacional nos países em desenvolvimento 
Ana Luisa Leite.

Principios de la arquitectura popular griega 
Katerina Maleka, Atenas, Grecia

Change of 'Yaotong' which is one of Rammed Earth architecture in China 
Toshiei Tsukidate.

Construcción en tierra y calicanto en Madrigal de las Altas Torres (Ávila): Estado de conservación de la arquitectura vernácula y monumental 
Verónica Coca Zancajo, Guillermo Quiroga Pérez, Valladolid, España

Proyecto de un edificio rural en 1934: pervivencia de la tradición constructiva del adobe y la tapia en España. 
F. Javier Carbayo, Félix Jové, Fernando Sánchez

Dos caras de una misma técnica constructiva. Registro y trasmisión de la construcción en tapia. 
Àngels Castellarnau Visús y Félix A. Rivas.

Las murallas de Mascarell (Castellón). Estudio gráfico y constructivo Víctor Gamero Bernal, Pablo Rodríguez-Navarro.
Caracterización de la tapia del S XII en la torre de la iglesia de San Pedro. Becerril de Campos, Palencia 
Mónica del Río Muñoz, Jesús San José Alonso, Félix Jové Sandoval.

Técnicas medievales de construcción en tapial de tierra y de cal y canto: los castillos de Soria 
Ignacio Javier Gil Crespo.

Torres de Tierra en Castilla y León: Evolución desde la torre maciza al recubrimiento cerámico. 
Sánchez Rivera, J. I., Fernández Martín, J.J, San José Alonso, J. I.

Creación de un espacio intercultural inspirado en el temazcal tradicional oaxaqueño 
Boris Aparicio, Alfonso J. Aparicio

Del barro a la piedra en la arquitectura rural auxiliar. Chozos y casetas en tierra de campos y Montes Torozos. 
Óscar Abril Revuelta, Félix Lasheras Merino.

El destino de las kasbahs del Alto Atlas en Marruecos. Tres ejemplos en el valle del M'Goun 
Pablo Rodríguez-Navarro, Teresa Gil Piqueras.

Estudios previos para la restauración de la Torre Muza de Benifaió (Valencia): Un planteamiento multidisciplinar en el ámbito universitario. 
Vicente López Mateu, Teresa M. Pellicer Armiñana, Pablo Rodríguez Navarro, Santiago Tormo Esteve

Recuperación del patrimonio arquitectónico del oasis de M'Hamid. Una oportunidad para el desarrollo 
Oriol Domínguez Martínez, Emilio Roldán Zamarrón, Alejandro García Hermida.

Con los pies en la tierra. Experiencia en el sur de Marruecos 
Andrea Lamas Domingo, Anna Rico Llopis.
2. RESTAURACIÓN
Diversas intervenciones en una torre de tapia de tierra en el Castillo de Oropesa del Mar. 
Fermin Font Mezquita. 

Consecuencias de intervenciones erróneas en la arquitectura de tapia. Ignacio Matoses Ortells, Javier Hidalgo Mora. Generalitat Valenciana, Consellería, 
Valencia, España. 

Revestimientos con fibras vegetales: metodología de estudio 
Diego García, Laura Milla, Antonia Navarro, María Palumbo 


3. ANÁLISIS E INNOVACIÓN
Revitalización de la Tradición constructiva en Tierra y Bambu en comunidades rurales y urbanas en Oaxaca, México 
Joao G. Boto M. Caeiro.

Casa S-low. Sistema Innovador de bioconstrucción modular con entramado de madera y tapial 
Àngel Estévez, Sandra Martinlara. Casa S-low, Barcelona, España

Proyecto Casa S-Low: construcción del prototipo y experiencia docente 
Montserrat Bosch, Antonia Navarro, Luis Allepuz, Cristian Poza.

Accessing the Initial rate of sorption for rammed earth made with palm kernel shell 
David C. Okoronkwo, Dr. NwabuezeEmekwuru, Prof. Jamal M. Khatib, Prof. Richard Hall.

Evaluación del comportamiento geométrico-estructural del Prototipo de las Ánimas 
Juan Ricardo Alarcón Martínez, Juan Manuel Everardo Carballo Cruz, Noemí Bravo Reyna

Apuntes sobre lo estereotómico en la arquitectura contemporánea y sistemas naturales para su configuración 
Fco. Javier Blanco Martín, Javier Arias Madero.

Iniciación al análisis del cumplimiento del Código Técnico de la edificación mediante el empleo del BT como material de construcción 
Ana Romero Girón, Reyes Rodríguez García, Jacinto Canivell García de Paredes, Ana González Serrano.

Construcción con muros de carga monocapa con BTC ligero Cannabric en el clima del sur de Europa 
Monika Brümmer.

Telheiro da Encosta do Castelo - Um Espaço de Tradição e Inovação 
Nuno Grenha.

"DSA Architecture de Terre" de la Escuela de Arquitectura de Grenoble (ENSAG), Laboratorio CRATerre Teoría y práctica en una formación pos-máster en Arquitectura de Tierra 
Bakonirina Rakotomamonjy, Enrique Sevillano.

Analysis of the earth construction's thermal behavior - in situ measurement and evaluation of thermal performance of three rammed earth case studies 
Sofía Sampaio, M. Gloria Gomes, António Borges Abel.

Construcción de un módulo de adobe reforzado con mallas de junco en cañete, Ica-Perú 
María Teresa Méndez, Jimmy Onofre, Gabriela Prado, Kattia Barreto, Cristina Arias, José García. 

4. COOPERACIÓN
Cómo puede ayudar el conocimiento de la construcción sostenible en el desarrollo de las ciudades. El ejemplo de Manta. Proyecto de Cooperación Internacional de la Universidad de Valladolid, España, y la Universidad Laica Eloy Alfaro de Manabí, Ecuador. 
José Luis Sáinz Guerra, Félix Jové, Rosario del Caz, Pedro Olmos, Miguel Camino

Viviendas de adobe en Camerún 
Sandra Bestraten Castells, Emilio Hormias Laperal.

El horno de ESTEPA: Calor sin leña 
María Brown Birabén, Raquel Martínez Fernández, Mariana Mas Gómez.

La tierra en la construcción de cerramientos con materiales de reciclaje 
Javier Arias Madero, Javier Blanco Martín.

Fogones mejorados de adobe 
Elena Carrillo Palacios, Jon de la Rica Extremiana. 
Ver índice e introduccion
Portada
Contraportada


Para más info:
GRUPOTIERRA   
E.T.S. de Arquitectura.   
Universidad de Valladolid - Av. de Salamanca s/n.  47014-Valladolid. España
T: +34  983 184 940  <tierra@arq.uva.es