Páginas

30 janeiro 2009

Bibliografia_ICOMOS_Património_Terra

A Bibliography on Earthen Architectural Heritage, is available in the ICOMOS Documentation Centre website. This bibliography is based on the documents on earthen architecture available at the Documentation Centre. It includes also the earthen architectural heritage on the UNESCO World Heritage List.

Está disponível no site do Centro de Documentação ICOMOS, uma extensa bibliografia sobre o Património Arquitectónico em Terra no Mundo.
Este documento está fundamentado no expólio documental sobre Arquitectura de Terra disponivel no Centro de Documentação UNESCO-ICOMOS e é acompanhado de imagens dos diversos monumentos construídos com Terra inscritos na lista de património da UNESCO.

27 janeiro 2009

Arq_Terra_Brutalista, ecológica e moderna: A casa em Taipa_Schlins_Austria

É com uma sincera ponta de entusiasmo que publicamos um projecto que é para nós uma inspiração e uma agradável surpresa vinda directamente das paisagens de Schlins, na Austria, uma parceria feliz entre o escultor Martin Rauch e o arquitecto Roger Boltshauser.
Esta é mais uma prova de como a Terra é um material de construção com enorme potencial e modernidade, capaz de produzir peças arquitectónicas com qualidade e conforto, assim o engenho e arte do Homem colaborem. É uma obra com pormenores arrojados e uma expressividade que só este material pode conseguir.
A descoberta do texto que se segue foi italiana, pelo que aqui fica o agradecimento pela tradução à Sofia, a nossa especialista em Italiano e em Arquitectura de Terra de Inglaterra.
Molto Grazie !!




Detalhes do Projecto
Local: Schlins, Áustria Cliente: Lehm Ton Erde GmbH, Schlins
Designers: Roger Boltshauser, Martin Rauch
Equipa: Thomas Kamm (líder do projecto), Ariane Wilson, Andreas Skambas
Estruturas: Josef Tomaselli
Empresas: em autoconstrução Martin Rauch com a sua equipa
Polimento: Johannes Moll
Marcenaria: Manfred Bischof
Cerâmica: Marta-Devebec Rauch, Sebastian Rauch
Tempo de Projecto: 1 ano e meio
Calendário de execução: meados de 2005 - 2008 com interrupções durante o Inverno e segundo a disponibilidade
Superfície construída: 140 m²
Volume de terra argilosa: 120 m3
Fotos: Beat Bühler http://www.beatbuehler.ch/


Introdução
A casa em terra batida (terra battuta) projectada pelo arquitecto Roger Boltshauser e pelo escultor Martin Rauch para Schlins (Áustria) reinterpreta contemporaneamente uma técnica antiquíssima. As construções em terra prensada possuem ilustres antepassados, para citar apenas um exemplo, além da Muralha da China, na Europa encontramos um edifício de 1270 alemão que ainda abriga uma biblioteca de livros, alojada ali pelas características ideais de microclima da construção.
O método de trabalho, difundido por todo o mundo, é conhecido como taipa em Portugal, “terra cruda” em Itália, “pisé de terre” em França, ou “rammed earth” em países de língua anglo-saxónica. Esta é uma técnica que proporciona o mesmo desempenho estrutural de uma parede construída com tijolos, mas tem a vantagem de ser altamente ecológica, sustentável, duradoura, e não menos importante, com características estéticas de "materialidade" muito procuradas na Arquitectura contemporânea.
A experiência de Rauch
Schlins é também a sede da oficina do escultor Martin Rauch, que tem desenvolvido e testado o processo construtivo da “terra cruda” no decurso das duas últimas décadas. Para além de ter no seu currículo diversos edifícios de habitação, edifícios públicos e cemitérios, trabalhando em colaboração com outros arquitectos - como neste projecto desenvolvido com Boltshauser, Rauch é hoje muitas vezes chamado como consultor/especialista em projectos de cooperação em países em desenvolvimento que envolvem a construção de habitações com tecnologias de baixo custo.
Em África, como em algumas zonas da Índia, a escolha da "terra cruda" está muito associada a vantagens como a disponibilidade da matéria-prima, a utilização de mão-de-obra local que não tem acesso ao auxílio de máquinas (demasiado caro para a economia local) e, finalmente, a construção de ambientes climaticamente confortáveis.

A matéria-prima
Quando falamos da terra usada para a construção de paredes, em geral faz-se referência ao substrato do subsolo obtido cavando 30 centímetros abaixo do topo do solo rico em húmus e, portanto, passível de fenómenos de podridão. A composição ideal da terra a ser utilizada é feita de argila, silte (um sedimento arenoso muito fino com granulometria variando entre 1/16 e 1/256 mm) e areia grossa.
As diferentes proporções desses componentes, e particularmente a percentagem de argila, determinam um material mais ou menos adequado para estruturas portantes. Quando a terra tem muita argila, é aconselhado a adição de inertes, como areia, ou de fibras vegetais, como por exemplo a palha.
No projecto aqui descrito, a terra local de Schlins demonstrou ser apropriada para a construção em terra porque se trata de um composto de dolomite sedimentada e, portanto, perfeito para o uso na terra prensada.
Desempenho da casa em “terra cruda”
A técnica da taipa ou terra prensada tem diversas características que a classificam entre os trabalhos de construção eco-sustentável e na área da biotecnologia. Em primeiro lugar falamos sobre a capacidade do material regular o clima interior graças à sua inércia térmica: o calor absorvido durante o dia é distribuído pela parede/muro muito lentamente de modo a ser libertado no interior do espaço durante a noite. Um outro elemento é a capacidade de absorção acústica da terra, que, graças à sua massa, reduz aprox. 50 decibéis no volume de som com um muro de 50 centímetros de espessura.
A terra prensada, para além de tudo isto é maleável, não-tóxica, incombustível e reciclável; uma vez que a recuperação do material envolve baixo consumo de energia.

O espaço criado pela escavação
A casa unifamiliar de Schlins, onde Martin Rauch pretende viver, foi inteiramente construída utilizando a terra adquirida pela escavação das fundações. Esta é uma das principais características da terra prensada em favor da eco-sustentabilidade: o principal material de construção, na verdade, é obtido localmente, não necessita de nenhum meio de transporte para o fornecimento e é inteiramente reciclável (se for usado de modo puro e não misturado com outras substâncias, como o cimento). O único material adicionado à terra para solidificar as fundações foi uma cal hidráulica natural proveniente da região da Renânia.


Os moldes e pressionada a terra
Uma vez realizadas as escavações e construídas as fundações da casa, foram criados moldes de madeira para iniciar a estratificação das paredes portantes. Também os moldes são feitos em camadas. Construído o primeiro molde, com cerca de um metro de altura e 45 cm de largura, avançou-se com a prensagem mecânica da terra – através de compressores pneumáticos que esmagam a terra: de 4 centímetros obtêm-se uma camada compacta de terra com 1 centímetro. Nesse ponto, deve-se esperar algumas semanas para a secagem da primeira fiada. Só apenas uma vez seca, a terra atinge a resistência necessária para suportar as cargas e as vibrações das compactações seguintes. Para o êxito do trabalho são fundamentais tanto os factores climáticos locais, como a humidade, a chuva e o vento, assim como a orientação das paredes em relação à luz e à sombra. Após a primeira camada seca, pode-se retirar os moldes e utilizar os mesmos painéis de madeira para prosseguir a compressão da parte superior. Também este aspecto da técnica significa que existe uma grande economia de matéria-prima para a criação de moldes.

Pavimentos e lajes
A utilização da terra compactada para pavimentos é recomendada se for colocada directamente sobre o solo. Também na casa de Schlins os pavimentos dos pisos inferiores foram criados em terra compactada. Eles foram feitos através de camadas de granulagem diferentes, cada vez mais finas, sendo na última camada utilizado óleo de linhaça para torná-la mais elástica. Para completar, a resistência à abrasão e o efeito hidrófugo foi conseguido com um acabamento de cera de abelha. As lajes dos andares superiores e cobertura foram feitos com traves de madeira e vigas de aço, onde se apoiam os tijolos - cozidos no forno do laboratório de Rauch.

Composição dos muros e paredes
A estratificação das paredes exteriores foi exteriormente intervalada com Pianelle (tipo tijoleira), tijolos planos (também feitos em terra prensada), que têm a função principal de prevenir o deslizamento horizontal. Do ponto de vista estético, os Pianelle expressam e salientam o princípio de estratificação da terra em que se baseia a técnica.
Frequentemente, o escultor austríaco acrescenta materiais como pó de carvão ou barro, entre as camadas para criar finas listas coloridas. Internamente, porém, as paredes foram isoladas com uma câmara de ar de 10 cm constituída por canas, depois consolidadas com uma mistura de argila, dentro das quais passam as tubagens de aquecimento do ar.
O isolamento reduz o risco de condensação. As paredes foram então revestidas com um reboco de argila de três centímetros, e finalmente caiadas.
Quanto às cores, o escultor, no interior da habitação, tratou as superfícies alternando diversas tonalidades de branco, criando um jogo de nuances cromáticas "naturais".

21 janeiro 2009

Natural Building Materials_Matt Muldoon

Natural Building Materials
by Matt Muldoon
By natural building materials, we mean building materials which require no or relatively small amounts of processing, and which will return to the earth without causing undue pollution. Common natural building materials are earth, straw, wood, stone, lime and hemp.
Common to all natural building materials is their low embodied energy. Embodied energy refers to the energy consumed over the lifetime of a building material, in its manufacture, processing, transportation, application and demolition. Bricks, for example, consume a huge amount of energy in that the raw materials are mined, processed, fired in a kiln, transported large distances, applied with the help of powered machinery and demolished and disposed of with more powered machinery. A contrast would be straw bales, which require relatively small amounts of energy in cultivation and processing, and the carbon cost of this energy is more than offset by the carbon sequestered by the plant itself. Straw bales also require less energy in their transportation, and at the end of their life they can be easily dismantled and left to rot.
Natural building materials also tend to be breathable - and must be used with breathable renders, plasters and paints. Breathable materials absorb and release water vapour, meaning that they regulate humidity levels well. When the air is humid, they absorb moisture; when the air is dry, they release moisture. This breathability circumvents many of the problems caused by water vapour in modern buildings, such as excessive dampness, condensation and mould growth.
A final point to make (whilst trying not to promote natural buildings as some kind of greenwashed eco-lifestyle-concept) is that many people derive enormous satisfaction from being in a building whose components have an obvious link to the surrounding world. People are pleased to know that the earth walls encircling them were dug from the ground beneath their feet, that the straw keeping them so snug was grown a few fields away, or that the trees holding up the roof inside have descendents growing outside.
So, if you decide you want a building made of natural materials, what are the possible choices? It depends what you want the building to do, and what materials are available near enough to the site for their transport to be sustainable.
In designing a building, several key factors are compressive strength, insulation, thermal mass and time and cost in building. Compressive strength refers to a material’s capacity to bear a load. Earth has a high compressive strength and straw bales have a lower compressive strength. Compressive strength is a limiting factor in the weight of your building, and weight is a limiting factor in the height of your building and what you have in it. So, how high do you want the building to be? Is the roof made of something light (like corrugated metal) or something heavy (like turf)? Will the building contain normal household objects, or heavy factory machinery?
Insulation refers to a material’s capacity to trap heat inside a building. Hempcrete and straw bales are relatively good insulators, earth and limecrete are relatively bad insulators. Is it important that the building is warm? Might the building get too warm? Will the building have a heating system or will it try and do without one?
Thermal mass refers to a material’s ability to store heat and release it. Earth has a large thermal mass, straw has almost none. So, if you have a constant low level of heating then thermal mass is less important. If high level heating is provided for a few hours a day, then thermal mass is needed to stabilise temperatures between heated and unheated hours. Thermal mass is a particularly important element in passive solar design. Passive solar design is the idea of building a structure that derives ambient heating from the sun, so that it needs little or no extra heating. In a passive solar design, you need a large area for solar energy to enter the building and insulation to prevent heat escaping the building, but you also need thermal mass to stabilise temperatures between the times when there is sun and the times when there isn’t.
I don’t want to argue that natural materials are a good thing per se; but I do want to explain their advantages, and also the contexts in which these advantages apply - there’s no point in super-insulating a building if you’re only going to keep tools in it and wood is not sustainable if it’s shipped half way round the world.


Earth as a Natural Building Material

Earth building means different things around the world. Sections of the Great Wall of China are made out of earth rammed into shuttering, prehistoric remains of earth brick cities are found throughout the Middle East, and earth brick remains the predominant building material in South and Central America. Earth can also be pressed onto wooden frameworks, as it has been for thousands of years in Africa and Europe, or just layed down in huge lumps and sculpted into wall shapes.
The key is clay. Clay is the binder that keeps the other components of earth (stone, sand, silt) together in a shapeable mass. Clay is an abundant material, but in parts of the British Isles where it's lacking, lime and chalk have also been used as binding agents.
Earth has developed "sustainable" credentials in the last couple of decades. It's true that the embodied energy of earth as a building material is very low, especially if it is extracted from the building site. It's not a fantastic insulator, however, so compensation must be made with a super-insulated roof, or with extra insulation in the walls. What earth provides in abundance, however, is thermal mass. When earth is used as a walling or flooring material, a massive heat store is created. This makes earth a very useful element in passive solar designs.
Earth has also developed a reputation for "healthiness". It will not give off any harmful materials, and as a breathable material it will regulate moisture levels in a building extremely effectively in combination with its natural plasters and renders.

Earth is durable. The oldest cob structures in the UK are 700 years old, and there is no reason they shouldn't last many centuries more. The critical factor is moisture. Earth buildings need to sit on a plinth to keep them out of direct contact with the ground, and the roof should have a good overhang to protect the walls from long periods of driving rain.
In the UK, the four traditional methods of earth building are cob, clay lump, rammed earth and wattle and daub.
Cob is simply 20-30% clay, 70-80% aggregates (sand and stones) and about half a bale of straw per tonne of mix. The clay binds the aggregates together to create a load-bearing material, while the straw acts as natural rebar, giving tensile and sheer strength, and also aids the drying and insulating capacity of the wall.The materials are mixed by hand, by animal, or with the backhoe of a digger, and the resulting dough-like mass is used to sculpt not only walls, but arches, chimneys and indeed any other feature that is needed. Cob is load bearing, with an average compressive strength of 0.77N/mm2, so wall thicknesses are usually between 450mm and 600mm, depending on the structure. Cob is currently enjoying a massive revival in the UK as a building material, partly because of its sustainable credentials, partly because it is a simple option for the self-builder and partly because it can be formed into shapes which are impossible with other materials.


Rammed earth, clay lump and wattle and daub are all similar in their composition to cob, though there are variations in the amount of clay used and the addition of other natural binders such as lime. Clay lump is simply cob made into bricks. The wet mix is put into molds and allowed to dry, not fired. The resulting blocks can be layed like bricks, with a clay slurry used for mortar. Because the density of the bricks tends to be higher than with cob, load bearing capacity is increased and walls can be thinner, but insulate less well. In rammed earth, the mix is wetted somewhat less than you would wet a cob mix, and then rammed into shuttering by hand or with pneumatic rams. Again, because the density is greater, you have greater load-bearing capacity but less insulation. Daub refers to a cob-like mix which is pressed onto a wooden framework, the wattle. In this type of building, a timber frame provides structural support, and the daub merely acts as an infill. For this reason, it can be very thin and quick to build, but again will not perform well from an insulation point of view.

Earth has been used for construction for at least 10,000 years, and 30% of the world's population live in earth homes. Earth's advantages as a building material are simple: it is everywhere, it is basically free and it is incredibly durable.

by Matt Muldoon of The Natural Building Company

Sustainable Architecture2009_Libia_Call for Papers

Fifth International Conference on Sustainable Architecture and Urban Development
Organized by Department of Architecture and Urban Planning, Al-Fateh University, Libya
In collaboration with The Center for the Study of Architecture in the Arab Region (CSAAR)
3 - 5 November, 2009 in Tripoli, Libya
Introduction
The increasing urbanization of many parts of the world coupled with other global issues such as environmental pollution, energy consumption, and resources shortage are resulting in major urban crises in many parts of the world.
In an effort to explore and map the challenges and opportunities of sustainable development, Department of Architecture and Urban planning at Al-Fateh University and the Center for the Study of Architecture in the Arab Region (CSAAR) have joined together to organize an international conference on sustainable architecture and urban development.
The conference aims to address the various aspects of urban development in accordance with the principles of sustainability.
The conference will address issues such as ecological and social sustainability, transit-oriented development, neotraditional design, eco-friendly development, economic and environmental sustainability, environmentalism, regionalism and architectural design. In addition, the conference will explore how neighborhood design can further a sustainable region and how local culture and history can interact with new urbanism concepts to create a new mix of urban development options.
Of particular interest for the conference is sustainability in the Arab world cities.
These cities undergo one of the fastest rates of developments in the world. This rapid, often erratic, growth has not occurred without unwanted consequences in the built environment. The theme of the conference is "Sustainable Architecture and Urban Development".
It aims to provide a forum to examine and discuss solution-oriented methods for implementing sustainable development and urbanism, and to stimulate more ideas and useful insights regarding architecture and urban development within the context of sustainability.
The conference welcomes papers that address issues related to sustainability in urban development and planning in the Arab region and elsewhere. In the interest of tackling these issues from multiple perspectives, we invite a wide array of research approaches, ranging from critical-theoretical interrogations to experimental-empirical studies that would encompass not only the spatial and physical aspects of the built environment, but also the social, economic, legislative, and ecological contexts and consequences.
Topics of Interest
We invite participants to submit papers in all areas related to sustainable development, and particularly work focusing on bridging the gap between theory and practice. The conferences welcome papers from participants from different backgrounds and countries. Papers may reflect on a wide spectrum of issues.
Topics of interest include BUT are not limited to:
·Sustainability Theory
·Ecological and Social Sustainability
·Tensions between Environmental and Economic Sustainability
· Land Use and Environmental Management
· Socio-Economic Issues
· Resources Management and Conservation
· Traditional and Modern Urbanism
· Parameters of Sustainable Urbanism
· Indicators of Sustainability
· Sustainability Evaluation Systems
· Sustainability in Developing Countries
· International Outlook on Sustainability
· New Urbanism/Transit-oriented Development
· Emergent Urban Patterns
· Green Development and Construction
· Traditional Neighbourhoods Design/Neotraditional Design
· Energy Use and Management
· Low Energy Architecture
· Sustainable Construction Materials & Technologies
· Clean Tech for Environmental issues
· IT Applications & Geo-Informatics
· Sustainability in Architectural and Planning Education
· Sustainable Housing and Urban Neighborhoods
· New Designs for Mixed Use Urban Fabric
· Contextual Architecture
· Cultural Heritage and Eco-Tourism
· Community Participation and Democratic Planning
· Modernization and Cultural Regeneration
· Eco-Design and Eco-friendly Development
· Landscape Strategies in Harsh Climates
· Sustainability in Transport and Landscape
· Legislative Empowerments for Sustainability
· International Organizations, Initiatives, and Standards on Sustainability
Important Dates
Deadline for abstracts: February 15, 2009
Full Paper submission for review: March 30, 2009
Notification of acceptance: May 15, 2009
Deadline for final papers: June 30, 2009
Submission and Relevant Information
Abstract submission must be in English with about 600 words. Full paper submission could be either in English or Arabic. Abstract and full paper submissions should be sent in MS Word or PDF document format.
Abstracts should be e-mailed to scientific committee chairs. Full paper submissions are required to be done online at the conference Website: www.csaar-center.org/conference/SD2009
Full paper format, submission guidelines, registration, accommodation and further information are available at the conference website. For further information about submissions, please contact scientific committee chairs.
International Advisory Committee
Attilio Petruccioli, Polytechnic of Bari, Italy
Nasser Rabat, Massachusetts Institute of Technology, USA
Richard S. Levine, University of Kentucky, USA
Salim Elwazani, Bowling Green State University, USA
Scientific Committee Co-Chairs
Suliman Fortea, Al-Fateh University, Libya smfortea@yahoo.com
Jamal Al-Qawasmi, KFUPM, Saudi Arabia jamalq@kfupm.edu.sa
Ezadean Shawesh, Al-Fateh University, Libya je_shawesh@Yahoo.com
Conference Manager
Dr. Suliman Fortea, Al-Fateh University, Libya
International Scientific Committee
Abdul-Jawad Ben Swessi, Al-Fateh University, Libya
Abdul Malek Abdul Rahman, University of Science Malaysia, Malaysia
Ahmad Sanusi Hassan, Universiti Sains Malaysia, Malaysia
Amjad Almusaed, Archcrea institute, Denmark
Antonio Frattari, University of Trento, Italy
Beser Oktay, East Mediterranean University, Cyprus
Charles Kibert, University of Florida, USA
Chrisna Du Plessis, Council for Scientific & Industrial Research, South Africa
Doris kowaltowski, UNICAMP, Brazil
Latifa Wafa, Al-Fateh University, Libya
Limin Hee, National University of Singapore, Singapore
Mohd Hamdan Ahmad, Universiti Teknologi Malaysia, Malaysia
Mohsen Aboutorabi, University of Central England, UK
Nicolai Steino, Aalborg University Denmark
Norhati Ibrahim, Universiti Teknologi MARA, Malaysia
Obas John Ebohon, De Montfort University, UK
Omar Abujnah, Al-Fateh University, Libya
Pablo Campos, Utoplan - University USPCEU, Spain
Paola Sassi, Oxford Brookes University, UK
Roger Tyrrell, University of Portsmouth, UK
Safei-Eldin Hamed, Texas Tech University, USA
Shakeel Qureshi, National College of Arts Lahore, Pakistan
Steffen Lehmann, the University of Newcastle, Australia

18 janeiro 2009

Conferência_Jean Dethier_Cambridge_UK

A organização da Conferência de 2009 da People, Land and Property patrocinada pela BDO Stoy Hayward convida todos os interessados a assistir à conferência
"Building with Raw Earth: An Eco-Revolution? The Sustainable Future of a Millenial Tradition: Housing, Urban Development and Land Uses" pelo arquitecto, urbanista e ensaísta belga Jean Dethier.
A Conferência terá lugar terça-feira, dia 17 de Fevereiro no Auditorium do Fitzwilliam College, em Cambridge pelas 17h00 da tarde.
Para mais informações podem contactar a organização pelo mail mmcy100atcam.ac.uk

16 janeiro 2009

Eventos_MEDITERRA 2009


Já está disponível o programa do MEDITERRA 2009, a 1ª Conferência de Arquitectura de Terra no Mediterrâneo.

O Evento, que se realizará na Sardenha, de 13 a 16 de Março 2009, foi já falado aqui no blog.
Para mais informações, podem consultar o website da conferência: http://people.unica.it/mediterra/

Comité de Organização do MEDITERRA 2009
Maddalena Achenza, Arch. (Universidade de Cagliari) Itália
Mariana Correia, Arch. (Escola Superior Gallaecia) Portugal
Hubert Guillaud, Prof. Arch. (CRATerre-ENSAG) França

Address:
MEDITERRA 2009 – 1st Mediterranean Conference on Earth Architecture Università di Cagliari - Facoltà di Architettura, Piazza d'Armi 16, 09123 Cagliari, ITALY
Telephone: (+39) 070 6755807
Fax: (+39) 070 6755816

O programa completo pode ser acedido aqui.
Um destaque especial para a presença em força de intervenções portuguesas.

13 janeiro 2009

Seminário_26Jan09_Univ. Minho_Restoration of the Bam Citadel after the 2003 Earthquake


Realiza-se no próximo dia 26 de Janeiro de 2009, no decurso do Seminário na Universidade do Minho, uma Conferência proferida pelo Professor Mehrdad Hejazi da Universidade de Isfahan, Irão, sobre os temas :
Restoration of the Bam Citadel after the 2003 Earthquake
Risks to Cultural Heritage in Western and Central Asia


Esta fotografia foi tirada antes do terramoto pela QuickBird satellite a 30 de Setembro de 2003


Esta fotografia foi tirada após o terramoto pela QuickBird satellite a 3 de Janeiro de 2004

Poder-se-á pensar que é um tiro no pé falar no blog da fragilidade sismica em Bam destas estruturas em terra, no entanto é preciso compreender que os edifícios em Bam foram, na sua esmagadora maioria construídos sem essa preocupação, e que muito provavelmente o nível de destruição e tragédia numa cidade construída em betão e tijolo sem cálculos preventivos em termos de sismicidade poderia ser até maior que aquele que observámos no Irão.
Temos sempre tendência para olhar o passado com os nossos olhos, o nosso conhecimento, os nossos conceitos, e muitas vezes consideramos esse passado como atrasado ou retrógado, olhamos para Bam e dizemos " estava-se mesmo a ver, era tudo em terra, se fosse em betõe não caía!" e depois ficamos espantados quando observamos obras fabulosas de engenharia sem o recurso ao betão e com séculos de existência e estabilidade, construidas por esse mesmo passado, e do mesmo modo a verdade é que edifícios em betão e ferro também caiem.
É preciso encarar a realidade e separar as questões, as novas construções em terra devem ter como premissa o cálculo e reforço estrutural sismico, não é novidade, não conheço aliás nenhuma das construções ditas normais que não o tenha, e este pode ser metálico, em betão ou noutro material que lhe confira a resistência necessária. A arquitectura de terra deve olhar para o Futuro integrando-se e inovando, orgulhosa da beleza do seu passado, mas com as ferramentas e tecnologias existentes no Presente.
O verdadeiro desafio em tudo isto, e creio que será debatido e demonstrado no Seminário é o de como recuperar Bam (porque este monte de terra tem um valor histórico inestimável), e é um desafio não apenas para quem lá vive, mas para arquitectos, historiadores, engenheiros, arqueólogos e construtores.
Há no entanto uma boa notícia, a terra das casas está lá toda! Se fosse em betão ia tudo pró lixo!

12 janeiro 2009

Arq_Terra_Nk’Mip Desert Cultural Centre_Osoyoos_Canadá

Nesta nossa louca e apaixonada procura por bons exemplos de Arquitectura onde o material Terra tem um papel fundamental, acabamos por empurrar os amigos, entusiasmá-los para "a causa" e eles, eventualmente enlouquecidos também, enviam-nos pérolas assim.

Obrigado Luísa.

Sem falar muito mais, publicamos o projecto tal como nos foi enviado, em inglês...para dar um toque ainda mais "internacionalle" ao Blog.

Nk'Mip Desert Cultural Centre - HBBH Architects
via Arch Daily by Nico Saieh on 12/23/08


Architects: Hotson Bakker Boniface Haden architects + urbanistes
Location: Osoyoos, British Columbia, Canada
Principal in charge: Bruce HadenProject
Architect: Brady Dunlop
Project Team: Norm Hotson, Stephanie Forsythe, Tina Hubert, Julie Bogdanowicza
Project year: 2006
Site Area: 1,600 acre
Constructed Area: 1,115 sqm
Materials: Rammed Earth, Concrete, Bluestain Pine CladdingStructural
Engineering: Equilibrium Consulting Inc.
Contractor: Greyback Construction
Lanscape Architecture: Phillips Farevaag Smallenberg
Client: Osoyoos Indian Band
Rammed Earth Wall Sub Contractor: Terra Firma Builders Ltd.
Photographs: Nic Lehoux Photography

The Nk'Mip Desert Cultural Centre is designed to be a specifc and sustainable response to the building's unique context-the unusual Canadian desert found in the South Okanagan Valley in Osoyoos, British Columbia.

Sited adjacent to a remnant of the Great Basin Desert (approximately 1,600 acres are being preserved by the band as a conservation area), this interpretative centre is part of a larger 200-acre master plan.Nk'Mip is the frst of a number of new B.C. aboriginal centres, and part of a growing trend to explore the expressive potential of architecture to convey the rich past and the transforming future of aboriginal culture.
The practical reasons behind this architectural exploration grow out of provincial leadership-a premier whose efforts to improve aboriginal relations have resulted in changes to the treaty process-as well as a shift in the regulatory environment governing the types of buildings permitted on reserve land.The building features indoor and outdoor exhibits that celebrate the culture and the history of the band, and is designed to be an extension of the remarkable site, and refects the band's role as stewards of the land.
The desert landscape fows over the building's green roof, held back by a rammed earth wall. The partially submerged building is sited very specifcally to focus the visitor's eye away from the encroaching development of Osoyoos to the west, with the height of the wall set to create a layered view of the desert rising up in the middle ground, receding to the riparian landscape adjacent, and the mountains in the distance.
The attenuated entry sequence from the parking area moves visitors through a series of nested concrete walls up to an entry plaza at the end of the rammed earth wall. The plaza-used for collecting large groups, and signage about events of the day-leads along a low concrete wall that separates the original desert landscape and the building. This route is further defned by channel of water that draws people towards the entry, past the cor-ten steel gate of the service court and administration access.

Entry into the interpretive centre occurs at the midpoint of the gently arcing wall. Inside, a theatre and "black box" exhibition space present information about the band and its historical relationship with the land. The round volume of the "pit house" at the centre of the exhibition space invokes the experience of conversation around a fre. From here, visitors move through a glazed wall into exterior exhibit space featuring information on native planting, an outdoor performance area and amphitheatre, a tule mat teepee, a large fgural sculpture, and a snake research area demonstration space. This area also serves as a trailhead for guided and unguided walks along 50 kilometres of paths through the desert.

Small interpretive pavilions and a village of reconstructed pit houses and interpretive sculptures punctuate these trails.

Sustainability Features
The Nk'Mip Desert Cultural Centre is located in one of the most spectacular and endangered landscapes in Canada. Its rare desert condition is the northernmost tip of the Great American Desert, which extends southward as far as the Sonoran Desert in Mexico. This parcel of land is the largest intact remnant of this unique habitat in Canada. It is part of the land of the Osoyoos Indian Band.
This band also belongs to the larger Okanagan Nation which extends down into the US (the Okanagan represents a broader geographic area of bands sharing common language with separate constituent bands).
The project's concern with deep sustainability grows out of the fragility of this landscape, and refects the core values and history of the band.
The extreme climate made sustainable design a very particular challenge. Hot, dry summers and cool, dry winters see average temperatures ranging from -18 degrees to +33 degrees and often reaching +40 on summer days. The building's siting and orientation are the frst strategic moves toward sustainability: the partially buried structure mitigates the extremes in temperature, and its orientation optimizes passive solar performance, with glazing minimized on the south and west sides. The project's ambitious approach towards sustainable design also includes the following features:

The largest rammed earth wall in North America
At 80m long, 5.5m high, and 600mm thick, this insulated wall (R33) stabilizes temperature variations. Constructed from local soils mixed with concrete and colour additives, it retains warmth in the winter, its substantial thermal mass cooling the building in the summer-much like the effect the surrounding earth has on a basement.
North America's largest rammed earth wall gives the building exterior a unique material and poetic sensibility, its graduated layers of earth shades evoking geological sedimentation within a distinctly contemporary architectural language. The wall has the appearance of being at once handmade and precise-its layers irregular, and its overall form sharp and geometrical, (the wall's surface telegraphs the familiar horizontal lines from the wooden formwork used in constructing it) as well as the irregular horizontal strata of the compacted layers of earth used to construct the wall.Rammed earth construction is a traditional building technique found most often in dry regions where wood is scarce. The modern version of this earth-based wall system combines two -250mm wythes of compacted sand and cement with 100mm of insulation sandwiched between.

Successive layers of differently coloured local soils were placed into the 600mm wide formwork and a pneumatically powered tamper was used to compress each layer to about 50 percent of its untamped height.Sedimentary-like in appearance, the exposed surface acts as the finished wall, is extremely stable and doesn't off-gas toxic or greenhouse gas emissions. The technique results in a physically strong, durable wall with excellent thermal qualities-heating up slowly during the day in the hot Okanagan sun, and releasing its heat in the evening.

Sustainability of building process also extends to the involvement of band members on the wall's construction, contributing to the long-term ecological sustainability of the area, of the band, and providing an opportunity to evolve an authentically South Okanagan building technique (something of an antidote to the faux Santa Fe style that increasingly dominates the region).This project created the opportunity for the Osoyoos Indian Band to develop unique, highly artisanal construction skills as rammed earth contractors and a team of band members worked with the contractor on the fabrication of the wall.

08 janeiro 2009

CRATerre_30 anos



O CRAterre-ENSAG para quem conhece, é a maior Referência de Conhecimento e Estudo sobre Arquitecturas com Terra em França e no Mundo.

Criado em 1979, o CRATerre é um Laboratório de Pesquisa e uma Equipa de Ensino da "École d'Architecture de Grenoble", habilitada desde 1986 pela Direction de l'Architecture et du Patrimoine du Ministère de la Culture et de la Communication.

Desenvolve as suas actividades principais nos domínios da conservação e gestão dos patrimónios arquitectónios em terra; da valorização da diversidade cultural ; do ambiente construído, tendo em vista uma melhor utilisação dos recursos materiais e humanos; - das questões ligadas às comunidades locais e à criação de melhores condições de acesso à habitação.

As actividades desenvolvidas no terreno pelo CRATerre, são na sua maioria em parceria com as organisações internacionais e locais. Elas conduzem e privilegiam as dinâmicas de desenvolvimento sustentável, inseridas em projectos de longo prazo.
Este projecto fantástico (é um sonho nosso fazê-lo em Portugal!) faz este ano 30 aninhos e bem merece os Parabéns!!

07 janeiro 2009

Blog_ArquitecturasdeTerra


BLOGoteca ON-LINE de ARQUITECTURA DE TERRA

06 janeiro 2009

Seminário_9Jan09_Univ. Minho

O Prof. Daniel Torrealva da PUCP, no Peru, irá apresentar o seminário “SEISMIC BEHAVIOR AND INNOVATIVE REINFORCEMENT TECHNIQUES FOR EARTHEN BUILDINGS” no dia 9 de Janeiro de 2009, no Departamento de Engenharia Civil da Universidade do Minho, em Guimarães.
O seminário é gratuito mas a inscrição é obrigatória, de acordo com a informação anexa.